Show simple item record

dc.contributor.authorMartinez Hernandez, Israel
dc.contributor.authorGenton, Marc G.
dc.date.accessioned2020-08-17T11:33:10Z
dc.date.available2020-01-16T08:26:56Z
dc.date.available2020-08-17T11:33:10Z
dc.date.issued2020-08-27
dc.date.submitted2019-09-09
dc.identifier.citationMartínez-Hernández, I., & Genton, M. G. (2020). Nonparametric trend estimation in functional time series with application to annual mortality rates. Biometrics. doi:10.1111/biom.13353
dc.identifier.issn0006-341X
dc.identifier.pmid32797623
dc.identifier.doi10.1111/biom.13353
dc.identifier.urihttp://hdl.handle.net/10754/661054
dc.description.abstractHere, we address the problem of trend estimation for functional time series. Existing contributions either deal with detecting a functional trend or assuming a simple model. They consider neither the estimation of a general functional trend nor the analysis of functional time series with a functional trend component. Similarly to univariate time series, we propose an alternative methodology to analyze functional time series, taking into account a functional trend component. We propose to estimate the functional trend by using a tensor product surface that is easy to implement, to interpret, and allows to control the smoothness properties of the estimator. Through a Monte Carlo study, we simulate different scenarios of functional processes to show that our estimator accurately identifies the functional trend component. We also show that the dependency structure of the estimated stationary time series component is not significantly affected by the error approximation of the functional trend component. We apply our methodology to annual mortality rates in France.
dc.description.sponsorshipThis research was supported by the King Abdullah University of Science and Technology (KAUST).
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1111/biom.13353
dc.rightsArchived with thanks to Biometrics
dc.titleNonparametric trend estimation in functional time series with application to annual mortality rates.
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentSpatio-Temporal Statistics and Data Analysis Group
dc.contributor.departmentStatistics Program
dc.identifier.journalBiometrics
dc.eprint.versionPost-print
dc.identifier.arxivid2001.04660
kaust.personMartinez Hernandez, Israel
kaust.personGenton, Marc G.
dc.date.accepted2020-08-10
refterms.dateFOA2020-01-16T08:27:35Z
dc.date.posted2020-01-14


Files in this item

Thumbnail
Name:
Martinez‐Hernandez&Genton 2020- Biometrics. .pdf
Size:
2.246Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version