On large lag smoothing for hidden Markov models
dc.contributor.author | Houssineau, Jeremie | |
dc.contributor.author | Jasra, Ajay | |
dc.contributor.author | Singh, Sumeetpal S. | |
dc.date.accessioned | 2020-08-19T11:40:20Z | |
dc.date.available | 2020-01-13T07:56:02Z | |
dc.date.available | 2020-08-19T11:40:20Z | |
dc.date.issued | 2019-12-03 | |
dc.identifier.citation | Houssineau, J., Jasra, A., & Singh, S. S. (2019). On Large Lag Smoothing for Hidden Markov Models. SIAM Journal on Numerical Analysis, 57(6), 2812–2828. doi:10.1137/18m1198004 | |
dc.identifier.doi | 10.1137/18M1198004 | |
dc.identifier.uri | http://hdl.handle.net/10754/660989 | |
dc.description.abstract | In this article we consider the smoothing problem for hidden Markov models. Given a hidden Markov chain { Xn} n≥ 0 and observations { Yn} n≥ 0, our objective is to compute E[varphi (X0, . ,Xk)| y0, . , yn] for some real-valued, integrable functional varphi and k fixed, k ll n and for some realization (y0, . , yn) of (Y0, . , Yn). We introduce a novel application of the multilevel Monte Carlo method with a coupling based on the Knothe-Rosenblatt rearrangement. We prove that this method can approximate the aforementioned quantity with a mean square error (MSE) of scrO (∈-2) for arbitrary ∈ > 0 with a cost of scrO (∈-2). This is in contrast to the same direct Monte Carlo method, which requires a cost of scrO (n∈-2) for the same MSE. The approach we suggest is, in general, not possible to implement, so the optimal transport methodology of [A. Spantini, D. Bigoni, and Y. Marzouk, J. Mach. Learn. Res., 19 (2018), pp. 2639-2709; M. Parno, T. Moselhy, and Y. Marzouk, SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1160-1190] is used, which directly approximates our strategy. We show that our theoretical improvements are achieved, even under approximation, in several numerical examples. | |
dc.publisher | Society for Industrial & Applied Mathematics (SIAM) | |
dc.relation.url | https://epubs.siam.org/doi/10.1137/18M1198004 | |
dc.relation.url | http://arxiv.org/pdf/1804.07117 | |
dc.rights | Archived with thanks to SIAM Journal on Numerical Analysis | |
dc.title | On large lag smoothing for hidden Markov models | |
dc.type | Article | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.identifier.journal | SIAM Journal on Numerical Analysis | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK | |
dc.contributor.institution | Department of Engineering, University of Cambridge, Alan Turing Institute, Cambridge, CB2 1PZ, UK | |
pubs.publication-status | Published | |
dc.identifier.arxivid | 1804.07117 | |
kaust.person | Jasra, Ajay | |
refterms.dateFOA | 2020-01-13T08:04:47Z | |
dc.date.published-online | 2019-12-03 | |
dc.date.published-print | 2019-01 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/