• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Late Pleistocene-Holocene Slip Rate Along the Hasi Shan Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of a Complex Fault System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    accepted_manuscript_matrau_et_al_2019.pdf
    Size:
    4.896Mb
    Format:
    PDF
    Description:
    Accepted manuscript
    Download
    Type
    Article
    Authors
    Matrau, R. cc
    Klinger, Yann cc
    Van der Woerd, J. cc
    Liu-Zeng, J. cc
    Li, Z.
    Xu, Xiwei cc
    Zheng, R.
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Physical Science and Engineering, Now at King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Date
    2019-12-04
    Online Publication Date
    2019-12-04
    Print Publication Date
    2019-12
    Embargo End Date
    2020-04-19
    Permanent link to this record
    http://hdl.handle.net/10754/660986
    
    Metadata
    Show full item record
    Abstract
    The Haiyuan fault is a major left-lateral strike-slip fault at the boundary between northeast Tibet and the Gobi platform. Combining measurements of offset alluvial terraces with 10Be-26Al cosmogenic radionuclides dating, we bracket the late Quaternary slip rate along the Hasi Shan fault section (37°00′N, 104°25′E) of the Haiyuan fault. At our reference site, terrace-riser offsets for five successive terraces range from ~5 to ~200 m, and associated cosmogenic radionuclide ages range from 9 ± 3 to 44 ± 7 kyr. These measurements yield a geological slip rate between 2.7 and 3.0 mm/year. Extending the offset measurements to the entire Hasi Shan front, it yields a slip rate of 3.2 ± 0.2 mm/year over the last ~50 kyr. Our rate is consistent with the lower estimates of other long-term rates of 4 to 5 mm/year, as well as with geodetic rates of 3 to 5 mm/year, determined in the same area. About 150 km farther west, however, Holocene terraces and moraines offsets have suggested higher slip rate values, between 6 and 15 mm/year. We interpret such discrepancy between rates determined along the western section of the Haiyuan fault and rates determined in the Hasi Shan section as being related to the complex geometry of the Haiyuan fault system along its eastern part, with several active strands moving at the same time and resulting in distributed slip among several sections of the fault system.
    Citation
    Matrau, R., Klinger, Y., Van der Woerd, J., Liu-Zeng, J., Li, Z., Xu, X., & Zheng, R. (2019). Late Pleistocene-Holocene Slip Rate Along the Hasi Shan Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of a Complex Fault System. Tectonics. doi:10.1029/2019tc005488
    Sponsors
    We thank the associate editor and an anonymous reviewer for their insightful comments that greatly improve this manuscript. We are grateful to René Boutin at Laboratoire d'Hydrologie et Géochimie de la Surface and ASTER Team (G. Aumaître, D. Bourlès, and K. Keddadouche) at ASTER-CEREGE for ICP-AES and AMS measurements, respectively. Part of this work was supported by INSU-CNRS, France, and the University of Strasbourg, J. Van der Woerd for the Al and Be concentration analyses at LHyGeS and IPGS, and for 10Be/9Be and 26Al/27Al ratios measurements on the Aster AMS facility (GEREGE, Aix-en-Provence, France) supported by INSU-CNRS and IRD. We thank Yang Ye for his help with the chi-square modeling of the depth profile data and A. S. Mériaux for her help with error propagation and mean age calculations. Part of this work has been supported by the CNRS PICS program France-Chine. All slip-rate data discussed in the paper, but the ones derived in this study, are extracted from the published literature listed in the reference list. Pleiades imagery is available for purchase from Airbus industry (https://www.intelligence-airbusds.com/en/8692-pleiades). This is IPGP contribution 4090.
    Publisher
    American Geophysical Union (AGU)
    Journal
    Tectonics
    DOI
    10.1029/2019TC005488
    Additional Links
    https://onlinelibrary.wiley.com/doi/abs/10.1029/2019TC005488
    ae974a485f413a2113503eed53cd6c53
    10.1029/2019TC005488
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.