Show simple item record

dc.contributor.advisorKeyes, David E.
dc.contributor.authorDoucet, Nicolas
dc.date.accessioned2020-01-12T06:34:03Z
dc.date.available2020-01-12T06:34:03Z
dc.date.issued2020-01-08
dc.identifier.doi10.25781/KAUST-ZS804
dc.identifier.urihttp://hdl.handle.net/10754/660964
dc.description.abstractThe recent advent of next generation ground-based telescopes, code-named Extremely Large Telescopes (ELT), highlights the beginning of a forced march toward an era of deploying instruments capable of exploiting starlight captured by mirrors at an unprecedented scale. This confronts the astronomy community with both a daunting challenge and a unique opportunity. The challenge arises from the mismatch between the complexity of current instruments and their expected scaling with the square of the future telescope diameters, on which astronomy applications have relied to produce better science. To deliver on the promise of tomorrow's ELT, astronomers must design new technologies that can e ectively enhance the performance of the instrument at scale, while compensating for the atmospheric turbulence in real-time. This is an unsolved problem. This problem presents an opportunity because the astronomy community is now compelled to rethink essential components of the optical systems and their traditional hardware/software ecosystems in order to achieve high optical performance with a near real-time computational response. In order to realize the full potential of such instruments, we investigate a technique supporting Adaptive Optics (AO), i.e., a dedicated concept relying on turbulence tomography. In particular, a critical part of AO systems is the supervisor module, which is responsible for providing the system with a Tomographic Reconstructor (ToR) at a regular pace, as the atmospheric turbulence evolves over an observation window. In this thesis, we implement an optimized supervisor module and assess it under real con gurations of the future optical telescope ever conceived. This necessitates manipulating large matrix sizes (i.e., up to 100k 100k) that contain measurements captured by multiple wavefront sensors. To address the complexity bottleneck, we employ high performance computing software solutions based on cutting-edge numerical algorithms using asynchronous, ne-grained computations as well as approximations techniques that leverage the resulting matrix data structure. Furthermore, GPU-based hardware accelerators are used in conjunction with the software solutions to ensure reasonable time-to-solution to cope with rapidly evolving atmospheric turbulence. The proposed software/hardware solution permits to reconstruct an image with high accuracy. We demonstrate the validity of the AO systems with a third-party testbed simulating at the E-ELT scale, which is intended to pave the way for a rst prototype installed on-site.
dc.language.isoen
dc.subjectAdaptive Optics
dc.subjectHigh Performance Computing
dc.subjectReal Time Controller
dc.subjectExtremely Large Telescope
dc.titleDesign of an Optimized Supervisor Module for Tomographic Adaptive Optics Systems of Extremely Large Telescopes
dc.typeDissertation
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberMoshkov, Mikhail
dc.contributor.committeememberHadwiger, Markus
dc.contributor.committeememberGratadour, Damien
dc.contributor.committeememberRigaut, Francois
dc.contributor.committeememberKulcsar, Caroline
dc.contributor.committeememberHoefler, Torsten
thesis.degree.disciplineComputer Science
thesis.degree.nameDoctor of Philosophy
refterms.dateFOA2020-01-12T06:34:03Z
kaust.request.doiyes


Files in this item

Thumbnail
Name:
Doucet_Dissertation_20191230.pdf
Size:
6.778Mb
Format:
PDF
Embargo End Date:
2021-01-08

This item appears in the following Collection(s)

Show simple item record