Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming.
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionMarine Science Program
Red Sea Research Center (RSRC)
Date
2019-12-05Permanent link to this record
http://hdl.handle.net/10754/660877
Metadata
Show full item recordAbstract
Global change impacts on marine biogeochemistry will be partly mediated by heterotrophic bacteria. Besides ocean warming, future environmental changes have been suggested to affect the quantity and quality of organic matter available for bacterial growth. However, it is yet to be determined in what way warming and changing substrate conditions will impact marine heterotrophic bacteria activity. Using short-term (4 days) experiments conducted at three temperatures (−3°C, in situ, +3°C) we assessed the temperature dependence of bacterial cycling of marine surface water used as a control and three different dissolved organic carbon (DOC) substrates (glucose, seagrass, and mangrove) in tropical coastal waters of the Great Barrier Reef, Australia. Our study shows that DOC source had the largest effect on the measured bacterial response, but this response was amplified by increasing temperature. We specifically demonstrate that (1) extracellular enzymatic activity and DOC consumption increased with warming, (2) this enhanced DOC consumption did not result in increased biomass production, since the increases in respiration were larger than for bacterial growth with warming, and (3) different DOC bioavailability affected the magnitude of the microbial community response to warming. We suggest that in coastal tropical waters, the magnitude of heterotrophic bacterial productivity and enzyme activity response to warming will depend partly on the DOC source bioavailability.Citation
Lønborg, C., Baltar, F., Carreira, C., & Morán, X. A. G. (2019). Dissolved Organic Carbon Source Influences Tropical Coastal Heterotrophic Bacterioplankton Response to Experimental Warming. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02807Sponsors
The authors would like to thank the SeaSim team at AIMS for the help with setting up the experiments. We would also like to thank Michele Skuza and Margaret Wright for their very skilful help with Chlorophyll a analysis and experiment preparations.Publisher
Frontiers Media SAJournal
Frontiers in microbiologyAdditional Links
https://www.frontiersin.org/article/10.3389/fmicb.2019.02807/fullhttps://www.frontiersin.org/articles/10.3389/fmicb.2019.02807/pdf
ae974a485f413a2113503eed53cd6c53
10.3389/fmicb.2019.02807
Scopus Count
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.