Ultrasensitive broadband infrared 4 × 4 Mueller-matrix ellipsometry for studies of depolarizing and anisotropic thin films
Name:
JVB19-AR-ICSE2019-00450.pdf
Size:
8.699Mb
Format:
PDF
Description:
Accepted manuscript
Type
ArticleAuthors
Furchner, Andreas
Kratz, Christoph

Ogieglo, Wojciech
Pinnau, Ingo

Rappich, Jörg
Hinrichs, Karsten

KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Engineering Program
Physical Science and Engineering (PSE) Division
KAUST Grant Number
BAS/1/1323-01-01Date
2019-12-18Online Publication Date
2019-12-18Print Publication Date
2020-01Embargo End Date
2020-12-18Permanent link to this record
http://hdl.handle.net/10754/660871
Metadata
Show full item recordAbstract
The authors present a second-generation broadband 4×4 Mueller-matrix (MM) ellipsometer for ultrasensitive infrared-spectroscopic (8000−800cm−1) studies of complex nanometer-thin films. In a modular design, the instrument employs retractable achromatic retarders and various sets of tandem polarizers. Using high-transmittance free-standing wire-grid polarizers, the device reaches an unparalleled precision of up to 5⋅10−5 in the important fingerprint region, even for block-offdiagonal MM elements. Broadband and signal-to-noise optimized access to the full 4×4 MM provides in-depth information on the sample’s polarimetric properties and opens the door for detailed explorations of depolarizing and anisotropic materials. The authors discuss examples of highly depolarizing nonuniform polyimide membranes, uniaxial-to-biaxial anisotropy changes in ultrathin polymer films, and azimuthal off-axis effects in 2D-structured silica arrays. Diverse optical modeling approaches based upon anisotropic layer stacks and rigorous coupled-wave analysis are used to quantify the optical, structural, and chemical properties of the sample.Citation
Furchner, A., Kratz, C., Ogieglo, W., Pinnau, I., Rappich, J., & Hinrichs, K. (2020). Ultrasensitive broadband infrared 4 × 4 Mueller-matrix ellipsometry for studies of depolarizing and anisotropic thin films. Journal of Vacuum Science & Technology B, 38(1), 014003. doi:10.1116/1.5129800Sponsors
The authors are indebted to Matthias Zellmeier (HZB Berlin) for the preparation of the trapezoidal SiO2 arrays, to Timur Shaykhutdinov for expertise in RCWA simulations, to Uwe Richter (Sentech Instruments GmbH), as well as Ilona Engler, Cordula Walder, and Özgür Savaş for technical assistance, to Margarita Günther (TU Dresden) and Karin Sahre and Klaus-Jochen Eichhorn (IPF Dresden) for providing the PI2611 samples, and to Sentech Instruments GmbH for construction of the retarder units. Financial support through European Union grants (EFRE 1.8/13, ProFIT Nos. 10160255, 10160265, and 10160256) as well as by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Regierende Bürgermeister von Berlin—Senatskanzlei Wissenschaft und Forschung, and the Bundesministerium für Bildung und Forschung is gratefully acknowledged. I.P. acknowledges support from KAUST (baseline funding No. BAS/1/1323-01-01)Publisher
American Vacuum SocietyAdditional Links
http://avs.scitation.org/doi/10.1116/1.5129800https://avs.scitation.org/doi/pdf/10.1116/1.5129800
ae974a485f413a2113503eed53cd6c53
10.1116/1.5129800