Show simple item record

dc.contributor.authorXu, Mengmeng
dc.contributor.authorZhao, Chen
dc.contributor.authorRojas, David S.
dc.contributor.authorThabet, Ali Kassem
dc.contributor.authorGhanem, Bernard
dc.date.accessioned2020-08-23T05:57:40Z
dc.date.available2019-12-23T06:42:01Z
dc.date.available2020-08-23T05:57:40Z
dc.date.issued2020
dc.identifier.citationXu, M., Zhao, C., Rojas, D. S., Thabet, A., & Ghanem, B. (2020). G-TAD: Sub-Graph Localization for Temporal Action Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr42600.2020.01017
dc.identifier.isbn978-1-7281-7169-2
dc.identifier.issn1063-6919
dc.identifier.doi10.1109/CVPR42600.2020.01017
dc.identifier.urihttp://hdl.handle.net/10754/660742
dc.description.abstractTemporal action detection is a fundamental yet challenging task in video understanding. Video context is a critical cue to effectively detect actions, but current works mainly focus on temporal context, while neglecting semantic context as well as other important context properties. In this work, we propose a graph convolutional network (GCN) model to adaptively incorporate multi-level semantic context into video features and cast temporal action detection as a sub-graph localization problem. Specifically, we formulate video snippets as graph nodes, snippet-snippet correlations as edges, and actions associated with context as target sub-graphs. With graph convolution as the basic operation, we design a GCN block called GCNeXt, which learns the features of each node by aggregating its context and dynamically updates the edges in the graph. To localize each sub-graph, we also design an SGAlign layer to embed each sub-graph into the Euclidean space. Extensive experiments show that G-TAD is capable of finding effective video context without extra supervision and achieves state-of-the-art performance on two detection benchmarks. On ActivityNet-1.3 it obtains an average mAP of 34.09%; on THUMOS14 it reaches 51.6% at IoU@0.5 when combined with a proposal processing method. The code has been made available at https://github.com/frostinassiky/gtad.
dc.description.sponsorshipThis work was supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3405.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9157091/
dc.relation.urlhttps://openaccess.thecvf.com/content_CVPR_2020/html/Xu_G-TAD_Sub-Graph_Localization_for_Temporal_Action_Detection_CVPR_2020_paper.html
dc.relation.urlhttps://arxiv.org/abs/1911.11462
dc.rightsArchived with thanks to IEEE
dc.titleG-TAD: Sub-Graph Localization for Temporal Action Detection
dc.typeConference Paper
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentElectrical Engineering
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentVisual Computing Center (VCC)
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST), Saudi Arabia
dc.conference.date13-19 June 2020
dc.conference.name2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dc.conference.locationSeattle, WA, USA
dc.eprint.versionPost-print
dc.identifier.pages10153-10162
dc.identifier.arxivid1911.11462
kaust.personXu, Mengmeng
kaust.personZhao, Chen
kaust.personRojas, David S.
kaust.personThabet, Ali Kassem
kaust.personGhanem, Bernard
kaust.grant.numberOSR-CRG2017-3405
dc.relation.issupplementedbyURL:https://github.com/frostinassiky/gtad
dc.identifier.eid2-s2.0-85094857551
refterms.dateFOA2019-12-23T06:43:26Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: frostinassiky/gtad: The official implementation of G-TAD: Sub-Graph Localization for Temporal Action Detection. Publication Date: 2019-11-28. github: <a href="https://github.com/frostinassiky/gtad" >frostinassiky/gtad</a> Handle: <a href="http://hdl.handle.net/10754/668117" >10754/668117</a></a></li></ul>
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
Xu_G-TAD_Sub-Graph_Localization_for_Temporal_Action_Detection_CVPR_2020_paper.pdf
Size:
3.729Mb
Format:
PDF
Description:
Published version
Thumbnail
Name:
Xu_G-TAD_Sub-Graph_Localization_CVPR_2020_supplemental.pdf
Size:
140.8Kb
Format:
PDF
Description:
Supplementary Material

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version