Show simple item record

dc.contributor.authorCioppa, Anthony
dc.contributor.authorDeliège, Adrien
dc.contributor.authorGiancola, Silvio
dc.contributor.authorGhanem, Bernard
dc.contributor.authorDroogenbroeck, Marc Van
dc.contributor.authorGade, Rikke
dc.contributor.authorMoeslund, Thomas B.
dc.date.accessioned2020-08-20T06:26:22Z
dc.date.available2019-12-22T12:31:11Z
dc.date.available2020-08-20T06:26:22Z
dc.date.issued2020
dc.identifier.citationCioppa, A., Deliege, A., Giancola, S., Ghanem, B., Van Droogenbroeck, M., Gade, R., & Moeslund, T. B. (2020). A Context-Aware Loss Function for Action Spotting in Soccer Videos. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr42600.2020.01314
dc.identifier.isbn978-1-7281-7169-2
dc.identifier.issn1063-6919
dc.identifier.doi10.1109/CVPR42600.2020.01314
dc.identifier.urihttp://hdl.handle.net/10754/660728
dc.description.abstractIn video understanding, action spotting consists in temporally localizing human-induced events annotated with single timestamps. In this paper, we propose a novel loss function that specifically considers the temporal context naturally present around each action, rather than focusing on the single annotated frame to spot. We benchmark our loss on a large dataset of soccer videos, SoccerNet, and achieve an improvement of 12.8% over the baseline. We show the generalization capability of our loss for generic activity proposals and detection on ActivityNet, by spotting the beginning and the end of each activity. Furthermore, we provide an extended ablation study and display challenging cases for action spotting in soccer videos. Finally, we qualitatively illustrate how our loss induces a precise temporal understanding of actions and show how such semantic knowledge can be used for automatic highlights generation.
dc.description.sponsorshipThis work is supported by the DeepSport project of the Walloon region and the FRIA (Belgium), as well as the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-CRG2017-3405.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156359/
dc.relation.urlhttps://ieeexplore.ieee.org/document/9156359/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9156359
dc.relation.urlhttps://openaccess.thecvf.com/content_CVPR_2020/html/Cioppa_A_Context-Aware_Loss_Function_for_Action_Spotting_in_Soccer_Videos_CVPR_2020_paper.html
dc.relation.urlhttps://openaccess.thecvf.com/content_CVPR_2020/papers/Cioppa_A_Context-Aware_Loss_Function_for_Action_Spotting_in_Soccer_Videos_CVPR_2020_paper.pdf
dc.rightsArchived with thanks to IEEE
dc.titleA Context-Aware Loss Function for Action Spotting in Soccer Videos
dc.typeConference Paper
dc.contributor.departmentVisual Computing Center (VCC)
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.date13-19 June 2020
dc.conference.name2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
dc.conference.locationSeattle, WA, USA
dc.eprint.versionPost-print
dc.contributor.institutionUniversity of Liège
dc.contributor.institutionAalborg University
dc.identifier.pages13123-13133
dc.identifier.arxivid1912.01326
kaust.personGiancola, Silvio
kaust.personGhanem, Bernard
kaust.grant.numberOSR-CRG2017-3405
dc.identifier.eid2-s2.0-85094809735
refterms.dateFOA2019-12-22T12:31:57Z
kaust.acknowledged.supportUnitOffice of Sponsored Research (OSR)


Files in this item

Thumbnail
Name:
CVPR2020___Improvement_on_SoccerNet (10).pdf
Size:
5.164Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version