3D Manhattan Room Layout Reconstruction from a Single 360 Image
dc.contributor.author | Zou, Chuhang | |
dc.contributor.author | Su, Jheng-Wei | |
dc.contributor.author | Peng, Chi-Han | |
dc.contributor.author | Colburn, Alex | |
dc.contributor.author | Shan, Qi | |
dc.contributor.author | Wonka, Peter | |
dc.contributor.author | Chu, Hung-Kuo | |
dc.contributor.author | Hoiem, Derek | |
dc.date.accessioned | 2019-12-19T07:12:08Z | |
dc.date.available | 2019-12-19T07:12:08Z | |
dc.date.issued | 2019-10-09 | |
dc.identifier.uri | http://hdl.handle.net/10754/660690 | |
dc.description.abstract | Recent approaches for predicting layouts from 360 panoramas produce excellent results. These approaches build on a common framework consisting of three steps: a pre-processing step based on edge-based alignment, prediction of layout elements, and a post-processing step by fitting a 3D layout to the layout elements. Until now, it has been difficult to compare the methods due to multiple different design decisions, such as the encoding network (e.g. SegNet or ResNet), type of elements predicted (e.g. corners, wall/floor boundaries, or semantic segmentation), or method of fitting the 3D layout. To address this challenge, we summarize and describe the common framework, the variants, and the impact of the design decisions. For a complete evaluation, we also propose extended annotations for the Matterport3D dataset, and introduce two depth-based evaluation metrics. | |
dc.description.sponsorship | This research is supported in part by ONR MURI grant N00014-16-1-2007, iStaging Corp. fund and the Ministry of Science and Technology of Taiwan (108-2218-E-007-050- and 107-2221- E-007-088-MY3). We thank Shang-Ta Yang for providing the source code of DuLa-Net. We thank Cheng Sun for providing the source code of HorizonNet and help run experiments on our provided dataset. | |
dc.publisher | arXiv | |
dc.relation.url | https://arxiv.org/pdf/1910.04099 | |
dc.rights | Archived with thanks to arXiv | |
dc.title | 3D Manhattan Room Layout Reconstruction from a Single 360 Image | |
dc.type | Preprint | |
dc.contributor.department | Visual Computing Center (VCC) | |
dc.contributor.department | Computer Science Program | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.relation.references | github:SunDaDenny/DuLa-Net | |
dc.eprint.version | Pre-print | |
dc.contributor.institution | University of Illinois at Urbana-Champaign | |
dc.contributor.institution | National Tsing Hua University | |
dc.contributor.institution | ShanghaiTech University | |
dc.contributor.institution | University of Washington | |
dc.contributor.institution | Apple Inc. | |
dc.identifier.arxivid | 1910.04099 | |
kaust.person | Peng, Chi-Han | |
kaust.person | Wonka, Peter | |
dc.relation.issupplementedby | github:zouchuhang/LayoutNetv2 | |
dc.relation.issupplementedby | github:ericsujw/Matterport3DLayoutAnnotation | |
dc.relation.issupplementedby | github:SunDaDenny/DuLa-Net | |
refterms.dateFOA | 2019-12-19T07:12:48Z | |
display.relations | <b>Is Supplemented By:</b><br/> <ul><li><i>[Software]</i> <br/> Title: zouchuhang/LayoutNetv2: PyTorch implementation of our IJCV paper: "Manhattan Room Layout Reconstruction from a Single 360 image: A Comparative Study of State-of-the-art Methods". Publication Date: 2019-07-30. github: <a href="https://github.com/zouchuhang/LayoutNetv2" >zouchuhang/LayoutNetv2</a> Handle: <a href="http://hdl.handle.net/10754/667893" >10754/667893</a></a></li><li><i>[Software]</i> <br/> Title: ericsujw/Matterport3DLayoutAnnotation: Layout annotation on a subset of Matterport3D dataset. Publication Date: 2019-10-20. github: <a href="https://github.com/ericsujw/Matterport3DLayoutAnnotation" >ericsujw/Matterport3DLayoutAnnotation</a> Handle: <a href="http://hdl.handle.net/10754/667903" >10754/667903</a></a></li><b>References:</b><br/> <ul><li><i>[Software]</i> <br/> Title: SunDaDenny/DuLa-Net: Pytorch demo code of our CVPR 2019 paper: DuLa-Net: A Dual-Projection Network for Estimating Room Layouts from a Single RGB Panorama. Publication Date: 2019-10-06. github: <a href="https://github.com/SunDaDenny/DuLa-Net" >SunDaDenny/DuLa-Net</a> Handle: <a href="http://hdl.handle.net/10754/667906" >10754/667906</a></a></li></ul> |
Files in this item
This item appears in the following Collection(s)
-
Preprints
-
Computer Science Program
For more information visit: https://cemse.kaust.edu.sa/cs -
Visual Computing Center (VCC)
-
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/