Show simple item record

dc.contributor.authorQadir, Ghulam A.
dc.contributor.authorSun, Ying
dc.date.accessioned2020-07-07T13:43:30Z
dc.date.available2019-12-18T12:03:39Z
dc.date.available2020-07-07T13:43:30Z
dc.date.issued2020-07-18
dc.date.submitted2019-07-10
dc.identifier.citationQadir, G. A., & Sun, Y. (2020). Semiparametric estimation of cross-covariance functions for multivariate random fields. Biometrics. doi:10.1111/biom.13323
dc.identifier.issn0006-341X
dc.identifier.issn1541-0420
dc.identifier.doi10.1111/biom.13323
dc.identifier.urihttp://hdl.handle.net/10754/660675
dc.description.abstractThe prevalence of spatially referenced multivariate data has impelled researchers to develop procedures for joint modeling of multiple spatial processes. This ordinarily involves modeling marginal and cross-process dependence for any arbitrary pair of locations using a multivariate spatial covariance function. However, building a flexible multivariate spatial covariance function that is nonnegative definite is challenging. Here, we propose a semiparametric approach for multivariate spatial covariance function estimation with approximate Matérn marginals and highly flexible cross-covariance functions via their spectral representations. The flexibility in our cross-covariance function arises due to B-spline based specification of the underlying coherence functions, which in turn allows us to capture non-trivial cross-spectral features. We then develop a likelihood-based estimation procedure and perform multiple simulation studies to demonstrate the performance of our method, especially on the coherence function estimation. Finally, we analyze particulate matter concentrations (PM2.5) and wind speed data over the West-North-Central climatic region of the United States, where we illustrate that our proposed method outperforms the commonly used full bivariate Matérn model and the linear model of coregionalization for spatial prediction.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1111/biom.13323
dc.rightsArchived with thanks to Biometrics
dc.titleSemiparametric estimation of cross-covariance functions for multivariate random fields
dc.typeArticle
dc.contributor.departmentStatistics Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalBiometrics
dc.eprint.versionPost-print
dc.identifier.arxivid1911.02258
kaust.personQadir, Ghulam A.
kaust.personSun, Ying
dc.date.accepted2020-06-24
refterms.dateFOA2019-12-18T12:04:22Z
dc.date.posted2019-11-06


Files in this item

Thumbnail
Name:
biom.13323.pdf
Size:
702.6Kb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record

VersionItemEditorDateSummary

*Selected version