Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications
Name:
1-s2.0-S0925400519316570-main.pdf
Size:
2.348Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2021-11-27
Type
ArticleAuthors
Deokar, Geetanjali
Casanova-Cháfer, Juan

Rajput, Nitul S.
Aubry, Cyril
Llobet, Eduard

Jouiad, Mustapha
Da Costa, Pedro M. F. J.

KAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
KAUST Grant Number
BAS/1/1346-01-01Date
2019-11-27Online Publication Date
2019-11-27Print Publication Date
2020-02Embargo End Date
2021-11-27Permanent link to this record
http://hdl.handle.net/10754/660592
Metadata
Show full item recordAbstract
Pristine, few-layer graphene (FLG)/Si nanopillar assemblies are introduced as gas sensitive chemiresistors showing unprecedented sensitivity towards NO2 when operated at room temperature (25 °C) and in humid air. To achieve this, we first developed wafer-scale (∼50 cm2) FLG growth using sub-micrometer thick films of thermally evaporated Cu/Ni on a SiO2/Si substrate. The Ni film was deposited and annealed to induce the formation of a Cu-rich binary alloy. This alloy formation limited the inter-diffusion of Cu and SiO2, a phenomenon known to take place during the CVD growth of graphene on Cu/SiO2/Si. The as-grown high structural quality FLG was transferred, using a conventional wet chemical method, to lithographically patterned arrays of Si nanopillars (non-flat substrate). Testing of the FLG/Si assembly revealed a NO2 sensitivity that outperforms what is reported in the literature for pristine graphene. Overall, our growth and device fabrication work-flow demonstrate a way to design graphene-based gas sensing systems without incurring inconvenient processing steps such as metal foil etching, surface functionalization or particle loading.Citation
Deokar, G., Casanova-Cháfer, J., Rajput, N. S., Aubry, C., Llobet, E., Jouiad, M., & Costa, P. M. F. J. (2020). Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sensors and Actuators B: Chemical, 305, 127458. doi:10.1016/j.snb.2019.127458Sponsors
This work was funded by the Masdar Institute (contract EX2016-000026) and KAUST (BAS/1/1346-01-01). We are thankful to Dr. Sozaraj Rasappa (Tampere University, Finland) for the patterned Si nanopillar substrate. GD is thankful to Leslie George (Khalifa University, Abu Dhabi) for technical support. E.L. is supported by the Catalan Institution for research and Advanced Studies via the 2018 ICREA Academia Award, by MINECO and FEDER under grant no. TEC2015- 71663R and by AGAUR under grant no. 2017 SGR 418.Publisher
Elsevier BVAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S0925400519316570ae974a485f413a2113503eed53cd6c53
10.1016/j.snb.2019.127458