• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Monomodal Ultrahigh-Molar-Mass Polycarbonate Homopolymers and Diblock Copolymers by Anionic Copolymerization of Epoxides with CO2

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Jia, Mingchen cc
    Hadjichristidis, Nikos cc
    Gnanou, Yves cc
    Feng, Xiaoshuang cc
    KAUST Department
    Academic Affairs
    Chemical Science Program
    KAUST Catalysis Center (KCC)
    Office of the VP
    Physical Science and Engineering (PSE) Division
    Polymer Synthesis Laboratory
    KAUST Grant Number
    BAS/1/1374-01-01
    Date
    2019-11-21
    Online Publication Date
    2019-11-21
    Print Publication Date
    2019-12-17
    Embargo End Date
    2020-11-21
    Permanent link to this record
    http://hdl.handle.net/10754/660430
    
    Metadata
    Show full item record
    Abstract
    Whatever the chemistry used for the synthesis of aliphatic polycarbonates, in particular, those of high molar mass, the adventitious presence of water leads to bimodal GPC traces and affords polycarbonate samples of uncontrolled and unpredictable molar masses. It appears that among all reagents used in the copolymerization of CO2 and epoxides, CO2 is the most difficult one to dry. To address this issue, triisobutylaluminum (TiBA) was employed in this work to dry CO2 through a bubbling method; its drying capability was investigated in the context of the copolymerization of CO2 with epoxides initiated by onium chloride in the presence of triethylborane (TEB). It was then compared to the efficiency of other already reported drying agents such as phosphorus pentoxide, molecular sieves and commercially available CO2 purifiers. With TiBA-dried CO2, its copolymerizations respectively with propylene oxide (PO) and cyclohexene oxide (CHO) could be successfully achieved in a wide range of degrees of polymerization (DP), with the value of DP as high as 16000. Diblock copolymers poly(propylene carbonate-b-cyclohexene carbonate) (PPC-b-PCHC) could also be prepared through sequential addition of epoxide monomers. The polycarbonates obtained under the conditions were all well-defined as characterized by NMR, GPC, triple detector-GPC, and differential scanning calorimetry (DSC).
    Citation
    Jia, M., Hadjichristidis, N., Gnanou, Y., & Feng, X. (2019). Monomodal Ultrahigh-Molar-Mass Polycarbonate Homopolymers and Diblock Copolymers by Anionic Copolymerization of Epoxides with CO2. ACS Macro Letters, 1594–1598. doi:10.1021/acsmacrolett.9b00854
    Sponsors
    This research work is supported by KAUST under baseline funding (BAS/1/1374-01-01).
    Publisher
    American Chemical Society (ACS)
    Journal
    ACS Macro Letters
    DOI
    10.1021/acsmacrolett.9b00854
    Additional Links
    https://pubs.acs.org/doi/10.1021/acsmacrolett.9b00854
    ae974a485f413a2113503eed53cd6c53
    10.1021/acsmacrolett.9b00854
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program; KAUST Catalysis Center (KCC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.