Reversible Electronic Solid–Gel Switching of a Conjugated Polymer
Name:
Gladisch_et_al-2020-Advanced_Science.pdf
Size:
8.440Mb
Format:
PDF
Description:
Published version
Type
ArticleAuthors
Gladisch, JohannesStavrinidou, Eleni

Ghosh, Sarbani
Giovannitti , Alexander
Moser, Maximilian
Zozoulenko, Igor
McCulloch, Iain

Berggren, Magnus
KAUST Department
Chemical Science ProgramKAUST Solar Center (KSC)
Physical Science and Engineering (PSE) Division
Date
2019-10-28Online Publication Date
2019-10-28Print Publication Date
2020-01Permanent link to this record
http://hdl.handle.net/10754/660369
Metadata
Show full item recordAbstract
Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000–10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid-state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.Citation
Gladisch, J., Stavrinidou, E., Ghosh, S., Giovannitti, A., Moser, M., Zozoulenko, I., … Berggren, M. (2019). Reversible Electronic Solid–Gel Switching of a Conjugated Polymer. Advanced Science, 1901144. doi:10.1002/advs.201901144Sponsors
J.G. and E.S. contributed equally to this work. M.B. and E.S. conceived the project. J.G. and E.S. performed the experiments and analyzed all data. S.G. and I.Z. performed and analyzed MD calculations. A.G. and M.M. synthesized materials. E.S., M.B., I.Z., and J.G. wrote the manuscript with input from all authors. E.S., M.B., I.Z., and I.M. supervised the project. This work was supported by Knut and Alice Wallenberg Foundation, The Wallenberg Wood Science Center (KAW 2018.0452), the Swedish Research Council (VR), and the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971). The computations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC and HPC2N. A.G. and I.M. acknowledge funding from the Engineering and Physical Sciences Research Council (EP/G037515/1) and (EP/N509486/1).Publisher
WileyJournal
Advanced ScienceAdditional Links
https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201901144https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/advs.201901144
ae974a485f413a2113503eed53cd6c53
10.1002/advs.201901144
Scopus Count
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.