Show simple item record

dc.contributor.authorHernández-Orozco, Santiago
dc.contributor.authorZenil, Hector
dc.contributor.authorRiedel, Jürgen
dc.contributor.authorUccello, Adam
dc.contributor.authorKiani, Narsis A.
dc.contributor.authorTegner, Jesper
dc.date.accessioned2021-02-22T07:51:45Z
dc.date.available2019-12-01T12:32:21Z
dc.date.available2021-02-22T07:51:45Z
dc.date.issued2021-01-25
dc.date.submitted2020-05-29
dc.identifier.citationHernández-Orozco, S., Zenil, H., Riedel, J., Uccello, A., Kiani, N. A., & Tegnér, J. (2021). Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces. Frontiers in Artificial Intelligence, 3. doi:10.3389/frai.2020.567356
dc.identifier.issn2624-8212
dc.identifier.doi10.3389/frai.2020.567356
dc.identifier.urihttp://hdl.handle.net/10754/660333
dc.description.abstractWe show how complexity theory can be introduced in machine learning to help bring together apparently disparate areas of current research. We show that this model-driven approach may require less training data and can potentially be more generalizable as it shows greater resilience to random attacks. In an algorithmic space the order of its element is given by its algorithmic probability, which arises naturally from computable processes. We investigate the shape of a discrete algorithmic space when performing regression or classification using a loss function parametrized by algorithmic complexity, demonstrating that the property of differentiation is not required to achieve results similar to those obtained using differentiable programming approaches such as deep learning. In doing so we use examples which enable the two approaches to be compared (small, given the computational power required for estimations of algorithmic complexity). We find and report that 1) machine learning can successfully be performed on a non-smooth surface using algorithmic complexity; 2) that solutions can be found using an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory of computability and a fundamentally continuous mathematical theory of optimization methods; 3) a formulation of an algorithmically directed search technique in non-smooth manifolds can be defined and conducted; 4) exploitation techniques and numerical methods for algorithmic search to navigate these discrete non-differentiable spaces can be performed; in application of the (a) identification of generative rules from data observations; (b) solutions to image classification problems more resilient against pixel attacks compared to neural networks; (c) identification of equation parameters from a small data-set in the presence of noise in continuous ODE system problem, (d) classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function, and (3) number of incoming edges.
dc.description.sponsorshipSH-O was supported by grant SECTEI/137/2019 awarded by Subsecretaría de Ciencia, Tecnología e Innovación de la Ciudad de México (SECTEI).
dc.publisherFrontiers Media SA
dc.relation.urlhttps://www.frontiersin.org/articles/10.3389/frai.2020.567356/full
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleAlgorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentBioscience Program
dc.identifier.journalFrontiers in Artificial Intelligence
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionFacultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
dc.contributor.institutionOxford Immune Algorithmics, Oxford, United Kingdom.
dc.contributor.institutionAlgorithmic Dynamics Lab, Unit of Computational Medicine, Karolinska Institutet, Solna, Sweden.
dc.contributor.institutionAlgorithmic Nature Group, LABORES, Paris, France.
dc.identifier.volume3
dc.identifier.arxivid1910.02758
kaust.personZenil, Hector
kaust.personTegner, Jesper
dc.date.accepted2020-11-19
refterms.dateFOA2019-12-01T12:32:45Z
dc.date.posted2019-10-07


Files in this item

Thumbnail
Name:
frai-03-567356.pdf
Size:
2.173Mb
Format:
PDF
Description:
Publisher's version

This item appears in the following Collection(s)

Show simple item record

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
VersionItemEditorDateSummary

*Selected version