• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    EPSL-D-19-00547R1.pdf
    Size:
    5.661Mb
    Format:
    PDF
    Description:
    Accepted manuscript
    Embargo End Date:
    2021-10-23
    Download
    Type
    Article
    Authors
    Brothers, Daniel S. cc
    Miller, Nathaniel C.
    Barrie, J. Vaughn
    Haeussler, Peter J.
    Greene, H. Gary
    Andrews, Brian D.
    Zielke, Olaf cc
    Watt, Janet
    Dartnell, Peter
    KAUST Department
    Physical Science and Engineering (PSE) Division
    KAUST Grant Number
    BAS/1/1339-01-01
    Date
    2019-10-23
    Online Publication Date
    2019-10-23
    Print Publication Date
    2020-01
    Embargo End Date
    2021-10-23
    Permanent link to this record
    http://hdl.handle.net/10754/660310
    
    Metadata
    Show full item record
    Abstract
    Linking fault behavior over many earthquake cycles to individual earthquake behavior is a primary goal in tectonic geomorphology, particularly across an entire plate boundary. Here, we examine the 1150-km-long, right-lateral Queen Charlotte-Fairweather fault system using comprehensive multibeam bathymetry data acquired along the Queen Charlotte Fault (QCF) offshore southeastern Alaska and western British Columbia. Fine-scale analysis of tectonic geomorphology allowed us to identify and reconstruct 184 strike-slip piercing points over a 630 km stretch of the QCF. Age constraints from glacial recession and offshore sedimentation patterns yield a consistent slip-rate of ∼50–57 mm/yr since ∼17–12 ka, the fastest rate for a continent-ocean strike-slip fault on Earth. These slip-rates equal or exceed estimates of Pacific-North America (PA-NA) relative motion from global plate reconstructions, indicating that PA-NA motion is highly localized. The QCF cuts the seafloor along a narrow and unusually straight trace for its entire length and multiple fault traces are observed only at local step-overs. The geometry and behavior of the QCF over many earthquake cycles is simple and typical of mature faults with relatively homogeneous stress fields. Since the QCF is the primary PA-NA plate boundary, we used the trace of the QCF to define the small circle path for relative plate motion and computed the associated Euler pole. Predicted along-strike obliquity variations based on the new pole agree with observed tectonic geomorphology and suggest that previous global plate reconstructions overestimated the degree of oblique convergence along the QCF. We also find that subtle, long-wavelength (75–150 km) bends and discrete step-overs appear to define the endpoints of M>7 earthquakes, suggesting that obliquity and resultant fault geometry may control rupture segmentation and asperity development. Lastly, the agreement between predicted obliquity and tectonic geomorphology along the entire length of QCF compelled a reevaluation of regional tectonic models. In the north, the eastern Yakatat Terrane appears to be translating northwest with the Pacific plate, and slip transferred from the QCF to the Fairweather Fault results in ∼20 mm/yr of convergence along the southern St. Elias mountains. In the south, we predict a reduced rate of convergence along the QCF west of Haida Gwaii (∼5–6 mm/yr of shortening, on average) relative to previous studies. Our results support a model for transpression and strike-slip partitioning along the edge of a hot and weak Pacific Plate, leading to crustal thickening and growth of the Queen Charlotte Terrace to the west of Haida Gwaii.
    Citation
    Brothers, D. S., Miller, N. C., Barrie, J. V., Haeussler, P. J., Greene, H. G., Andrews, B. D., … Dartnell, P. (2019). Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth and Planetary Science Letters, 115882. doi:10.1016/j.epsl.2019.115882
    Sponsors
    We thank the following individuals and organizations involved with the multibeam bathymetry surveys along the QCF: Jared Kluesner, Jackson Currie, Gerry Hatcher, Rob Wyland, Uri ten Brink, and Chuck Worley of the USGS; Robert Kung of the GSC; Kristen Green, Jim DeLaBruere, Cedar Stark, Craig Conger, Dave Anderson and James Wiese of the Alaska Department of Fish and Game; Doug MacGillivray and David Maggio of Terrasond Limited; the NOAA Integrated Ocean and Coastal Mapping Project; Kris Ludwig, John Lewis and STEMSEAS program; the crews of NOAA Ship Fairweather and Canadian Coast Guard vessels Vector and Tully. We also thank Scott Bennett, Anne Tréhu, Thorne Lay, Jason Addison, Tom Ager, and Jim Baichtal for helpful discussions and/or reviews of this article. The U.S. Geological Survey and the Geological Survey of Canada jointly funded this study; the publication was in part supported by funding from King Abdullah University of Science and Technology (KAUST), grant BAS/1/1339-01-01. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Publisher
    Elsevier BV
    Journal
    Earth and Planetary Science Letters
    DOI
    10.1016/j.epsl.2019.115882
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0012821X19305746
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.epsl.2019.115882
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.