• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    New Approaches in Bayesian Estimation of Earthquake Fault Model Parameters from InSAR and GPS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    RishabhDutta_PhDthesis.pdf
    Size:
    21.83Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Dutta, Rishabh cc
    Advisors
    Jonsson, Sigurjon cc
    Committee members
    Hooper, Andrew
    Knio, Omar cc
    Mai, Paul Martin cc
    Program
    Earth Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2019-10
    Embargo End Date
    2020-11-30
    Permanent link to this record
    http://hdl.handle.net/10754/660303
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-11-30.
    Abstract
    InSAR and GPS observations of Earth’s surface displacements are used to infer earthquake source parameters. Bayesian estimation of the source parameters produces the probability densities of the plausible parameters that are consistent with the observations. This facilitates analysis of the model parameters uncertainties and trade-offs regardless of the complexities (e.g., non-linearity, non-uniqueness, under- or over- parametrization, etc.) of the problem. In this thesis, I show various approaches, e.g., use of a priori information and innovative parameterization schemes, to study the effect of fault geometry in the fault slip estimation. During the Bayesian inference of fault parameters for the 2005 Mw6.6 Fukuoka (Japan) earthquake from InSAR and GPS data, the offshore location of the earthquake makes the fault parameter estimation challenging with geodetic data coverage mostly to the southeast of the earthquake. We use a priori constraints on the moment magnitude and fault location with respect to the aftershock distribution to alleviate the bias in fault slip estimation. Propagating the uncertainties of the improved source parameters in the calculation of Coulomb failure stress changes shows that the mainshock strongly increased failure stresses on a nearby fault below Fukuoka city. Biased discrepancies between the observations and the forward model predictions during fault source estimation of large earthquakes occur while using pre-assumed simple planar fault geometries. For this, we parametrize complex non-planar fault geometries using a few polynomial parameters. The fault geometry parametrization allows the fault surface to have any desired curvature in both the down-dip and the along-strike directions. Using Bayesian inference to estimate the fault geometrical parameters simultaneously with the spatially-variable slip, we demonstrate the precise estimation of the location and value of the slip and their uncertainties. This robust approach is exemplified using a synthetic test considering a checkerboard-like slip pattern on a listric non-planar fault. This fault parametrization is then used to infer the non-planar fault geometry simultaneously with the spatially-variable slip for the 2011 MW 9.1 megathrust TohokuOki (Japan) earthquake. A priori information like the trench and seismicity locations are utilized during the Bayesian estimation. The fault geometry estimated for the earthquake shows variation in fault dip in both along-strike and down-dip directions, while the slip distribution estimated is comparable to those of the previously reported studies. The fault geometry and its uncertainties compare well with the Hayes’ slab1.0 model. The primary outcome of the thesis is that the fault slip estimates can be biased due to pre-assumed fault location and geometry. Through simultaneous Bayesian estimation of non-planar fault geometry and spatially-variable slip, good coverage of the geodetic data can resolve for fault-dip variations at depths, and the estimated slip is not biased. The proposed method can exploit the potential of the improved spatial resolution of the geodetic data in the future.
    Citation
    Dutta, R. (2019). New Approaches in Bayesian Estimation of Earthquake Fault Model Parameters from InSAR and GPS. KAUST Research Repository. https://doi.org/10.25781/KAUST-RJ440
    DOI
    10.25781/KAUST-RJ440
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-RJ440
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.