• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    GPS Observations and Modelling of Crustal Deformation in Gulf of Aqaba

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jose Thesis.pdf
    Size:
    43.39Mb
    Format:
    PDF
    Embargo End Date:
    2021-11-28
    Download
    View more filesView fewer files
    Type
    Thesis
    Authors
    Castro-Perdomo, Nicolas cc
    Advisors
    Jonsson, Sigurjon cc
    Committee members
    Mai, Paul Martin cc
    Afif, Abdulkader M.
    Masson, Frederic
    Program
    Earth Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2019-10
    Embargo End Date
    2021-11-28
    Permanent link to this record
    http://hdl.handle.net/10754/660293
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis will become available to the public after the expiration of the embargo on 2021-11-28.
    Abstract
    The Dead Sea Transform fault (DST) is one of the most prominent tectonic features in the eastern Mediterranean region, located between the Arabian plate and the Sinai sub-plate. Several aspects of this fault system have been thoroughly studied. However, its present-day kinematics along its southern end in Gulf of Aqaba remains poorly understood. This dissertation focusses on crustal motions near Gulf of Aqaba by using geodetic observations and analytical models of crustal deformation. Here we present a crustal motion velocity field for this region based on three GPS surveys conducted between 2015 and 2019 at 30 campaign sites, complemented by 12 permanent stations operating in Gulf of Aqaba. A new pole of rotation for the Sinai sub-plate was constrained based on five selected stations on the Sinai Peninsula. This Euler pole predicts slip rates of ∼ 4.5 mm/yr on the fault system in the gulf. Furthermore, our results show that interseismic models of crustal deformation do not provide a reasonable constraint on fault locking depths due to limited near-fault measurements. Despite this, our results show a coherent left-lateral residual motion across the fault system in Gulf of Aqaba that could not be resolved by conventional strain accumulation models. We tested whether postseismic viscoelastic relaxation of the lower crust and upper mantle following the Nuweiba Earthquake (MW 7.2, 1995) can explain this residual signal. We found that modelled postseismic velocities match the direction of residual velocities in the NE and SW quadrants relative to the Aragonese fault, which ruptured during the Nuweiba Earthquake. However, our forward models of postseismic deformation could not reproduce the overall magnitudes of the residual velocity field, underestimating eastward residuals in the quadrants NE and SW and overshooting northward misfits in the quadrants SE and NE relative to the fault trace. Estimates of the current geodetic moment accumulated on the fault system in the gulf indicate that impending earthquakes could potentially reach MW 7.0. Our results further suggest recurrence times of ∼840 yr and ∼1160 yr for large earthquakes (MW 7.2) on the Eilat and Dahab fault segments in the gulf, respectively. We anticipate our results to be a starting point for future geodetic studies incorporating more GPS stations on both sides of the gulf and implementing more sophisticated models of crustal deformation considering three-dimensional rheological variations and precise finite-fault models.
    Citation
    Castro-Perdomo, N. (2019). GPS Observations and Modelling of Crustal Deformation in Gulf of Aqaba. KAUST Research Repository. https://doi.org/10.25781/KAUST-3QAX1
    DOI
    10.25781/KAUST-3QAX1
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-3QAX1
    Scopus Count
    Collections
    Theses; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.