• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Performance Evolution of Organic Solar Cells Using Nonfullerene Fused-Ring Electron Acceptors

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Xin Song - Dissertation - Final Draft.pdf
    Size:
    6.368Mb
    Format:
    PDF
    Description:
    Xin Song - Dissertation - Final Draft.pdf
    Download
    Type
    Dissertation
    Authors
    Song, Xin cc
    Advisors
    Baran, Derya cc
    Committee members
    Laquai, Frédéric cc
    Mohammed, Omar F. cc
    Yip, Hin-Lap
    Program
    Material Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2019-10-24
    Permanent link to this record
    http://hdl.handle.net/10754/660272
    
    Metadata
    Show full item record
    Abstract
    As one of the most promising solar cell technologies, organic solar cells have unique superiorities distinct from inorganic counterparts, such as semitransparency, flexibility and solution-processability, as well as tunable photophysical properties, which originate from the structural verstailities of organic semiconductors. A major breakthrough in OSCs was the exploration of novel non-fullerene electron acceptor (NFAs): In comparison with traditional fullerene derivative acceptors, NFA possesses several advantages, such as low synthesis cost, tunable absorption range and adjustable energetic level, which effectively provides a wide light-harvesting window with low energetic loss. In recent decades, fused-ring electron acceptors (FREAs) have obtained an irreplaceable status in the development of OSCs. However, there are still initial drawbacks to FREA-based devices including: 1: the degree of molecular packing and the corresponding impact on device performance, which has not been studied in depth; 2: the feasibility of approaches for controlling the bulk heterojunction morphology of the film, which also has not been systemic researched; 3: the presence of bulk (geminate and non-geminate) and surface recombination which significantly affects the efficiency and stability of working devices. In this thesis, I took the above three issues as my main doctoral research subjects. In the first part of the thesis, I shine light onto the strength of π-conjugated backbones in FREA molecular structures, which strongly affect the intramolecular interaction. Herein, two FREA with different conjugated framework (IDT core vs IDTT core) are synthesized and employed as electron acceptors in OSCs. A significantly enhanced power conversion efficiency of 11.2% is obtained from IDTTIC-based devices in comparison with that of IDTIC-based devices (5.6%). After considering the electron-donating part in FREA molecules, I also study the effect of the terminal unit, which has a strong relationship with the intramolecular charge transfer effect and intermolecular interactions. Solvent additives are another powerful strategy to further improve the photovoltaic efficiency. 1-chloronaphthalene (CN) was found to be useful in the PTB7-Th:IEICO-4F system, which show a PCE improvement from 9.5% to 12.8%. Furthermore, by utilizing a small molecule donor, BIT-4F-T, as a third component, an optimum PCE of 14.0% is achieved in the devices based on PTB7-Th:IEICO-4F.
    Citation
    Song, X. (2019). Performance Evolution of Organic Solar Cells Using Nonfullerene Fused-Ring Electron Acceptors. KAUST Research Repository. https://doi.org/10.25781/KAUST-762KM
    DOI
    10.25781/KAUST-762KM
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-762KM
    Scopus Count
    Collections
    Dissertations; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.