• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    The Contrasting Roles and Importance of Dispersal, Horizontal Gene Transfer and Ecological Drift in Bacterial Community Assembly

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Adriana Valenzuela Cuevas Dissertation.pdf
    Size:
    5.749Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Embargo End Date:
    2023-04-30
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Valenzuela-Cuevas, Adriana cc
    Advisors
    Daffonchio, Daniele cc
    Committee members
    Hong, Pei-Ying cc
    Moran, Xose Anxelu G. cc
    Marzorati, Massimo
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2019-10
    Embargo End Date
    2023-04-30
    Permanent link to this record
    http://hdl.handle.net/10754/659509
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2023-04-30.
    Abstract
    Communities are defined as the ensemble of populations that interact with each other and with the environment in a specific time and location. Community ecology studies how communities assemble, what are the patterns of diversity, abundance, and composition of species, and the processes driving these patterns. It includes four basic mechanisms for the assembly of communities: dispersal, drift, selection, and speciation, with each mechanism influencing how the communities change in a different way. Dispersal, the movement of species from one geographical location to another, plays a major role in the recolonization of barren environments and the introduction of new species to established environments. Drift (i.e., random birth and death events within a community) could, theoretically, be negligible in bacterial communities where the high population densities are expected to buffer its effect. Conversely, horizontal gene transfer can be a strong selective force, as horizontally transferred genetic material is a source of functional traits that may provide selective advantages to the recipient cells, especially in environments where strong selection pressure occurs. In my Ph.D. thesis, I aim to examine these three contrasting mechanisms in controlled, simplified bacterial communities that are designed and studied through a synthetic ecology approach. I found that even at low dispersal rates, the species abundance of planktonic bacterial communities can be homogenized by migration. This homogenization can occur even when there are strong variable selection forces interacting in each environment. I also found strong evidence on the importance of stochasticity in communities. Drift can decrease the community similarity by up to 6.3%, and increases the probabilities that species become extinct, especially in the case of rare taxa. In contrast, I found that naturally competent bacteria are favored to uptake more DNA in communities that are highly productive and phylogenetically diverse. This pattern is explained by a potential higher availability of naked DNA for naturally competent bacteria, presumably because there are more cells and the predation systems are more effective. Altogether, our findings support the theory on the importance of stochastic forces and their interaction with deterministic forces on the shaping of microbial community assembly.
    Citation
    Valenzuela-Cuevas, A. (2019). The Contrasting Roles and Importance of Dispersal, Horizontal Gene Transfer and Ecological Drift in Bacterial Community Assembly. KAUST Research Repository. https://doi.org/10.25781/KAUST-98PA2
    DOI
    10.25781/KAUST-98PA2
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-98PA2
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program; PhD Dissertations

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.