• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Study of III-nitride Nanowire Growth and Devices on Unconventional Substrates

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Thesis.pdf
    Size:
    41.65Mb
    Format:
    PDF
    Description:
    Final thesis
    Download
    Type
    Dissertation
    Authors
    Prabaswara, Aditya cc
    Advisors
    Ooi, Boon S. cc
    Committee members
    Ooi, Boon S. cc
    Ohkawa, Kazuhiro cc
    Alshareef, Husam N. cc
    Tchernycheva, Maria
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2019-10
    Embargo End Date
    2020-10-06
    Permanent link to this record
    http://hdl.handle.net/10754/656923
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-10-06.
    Abstract
    III-Nitride materials, which consist of AlN, GaN, InN, and their alloys have become the cornerstone of the third generation compound semiconductor. Planar IIINitride materials are commonly grown on sapphire substrates which impose several limitations such as challenging scalability, rigid substrate, and thermal and lattice mismatch between substrate and material. Semiconductor nanowires can help circumvent this problem because of their inherent capability to relieve strain and grow threading dislocation-free without strict lattice matching requirements, enabling growth on unconventional substrates. This thesis aims to investigate the microscopic characteristics of the nanowires and expand on the possibility of using transparent amorphous substrate for III-nitride nanowire devices. In this work, we performed material growth, characterization, and device fabrication of III-nitride nanowires grown using molecular beam epitaxy on unconventional substrates. We first studied the structural imperfections within quantum-disks-in-nanowire structure grown on silicon and discovered how growth condition could affect the macroscopic photoluminescence behavior of nanowires ensemble. To expand our work on unconventional substrates, we also used an amorphous silica-based substrate as a more economical substrate for our nanowire growth. One of the limitations of growing nanowires on an insulating substrate is the added fabrication complexity required to fabricate a working device. Therefore, we attempted to overcome this limitation by 5 investigating various possible GaN nanowire nucleation layers, which exhibits both transparency and conductivity. We employed various nucleation layers, including a thin TiN/Ti layer, indium tin oxide (ITO), and Ti3C2 MXene. The structural, electrical, and optical characterizations of nanowires grown on different nucleation layers are discussed. From our work, we have established several key processes for transparent nanowire device applications. A nanowire LED emitting at ∼590 nm utilizing TiN/Ti interlayer is presented. We have also established the growth process for n-doped GaN nanowires grown on ITO and Ti3C2 MXene with transmittance above 40 % in the visible wavelength, which is useful for practical applications. This work paves the way for future devices utilizing low-cost substrates, enabling further cost reduction in III-nitride device fabrication.
    Citation
    Prabaswara, A. (2019). Study of III-nitride Nanowire Growth and Devices on Unconventional Substrates. KAUST Research Repository. https://doi.org/10.25781/KAUST-08V79
    DOI
    10.25781/KAUST-08V79
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-08V79
    Scopus Count
    Collections
    Dissertations; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.