All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage
dc.contributor.author | Wang,Zhenwei | |
dc.contributor.author | Alshammari, Fwzah Hamud | |
dc.contributor.author | Omran, Hesham | |
dc.contributor.author | Hota, Mrinal Kanti | |
dc.contributor.author | Al-Jawhari, Hala A. | |
dc.contributor.author | Salama, Khaled N. | |
dc.contributor.author | Alshareef, Husam N. | |
dc.date.accessioned | 2019-10-03T07:37:55Z | |
dc.date.available | 2019-10-03T07:37:55Z | |
dc.date.issued | 2019-09-08 | |
dc.identifier.citation | Wang, Z., Alshammari, F. H., Omran, H., Hota, M. K., Al-Jawhari, H. A., Salama, K. N., & Alshareef, H. N. (2019). All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage. Advanced Electronic Materials, 5(12), 1900531. doi:10.1002/aelm.201900531 | |
dc.identifier.doi | 10.1002/aelm.201900531 | |
dc.identifier.uri | http://hdl.handle.net/10754/656848 | |
dc.description.abstract | All-oxide, fully-transparent thin film transistors and rectifiers, processed entirely by atomic layer deposition, have been developed for on-chip capacitive energy storage. Fully depleted thin film transistor (TFT) operation is achieved by optimizing the carrier concentration in the ZnO channels. The TFTs show an average saturation mobility of 10.5 cm2 V−1 s−1, a stable positive turn-on voltage of 0.88 V, a low subthreshold swing of 0.162 V dec−1, and the entire device achieves an overall transmittance of 85%. The field-effect rectifiers (FER) are fabricated based on short-circuiting the gate and drain electrodes of the TFT structure. Rectification ratio of 3.5 × 106 is achieved in DC measurements. Under AC input, the rectifiers can steadily operate at an input frequency up to 10 MHz and amplitude (peak to peak) up to 20 V. The rectifier can be used for signal processing applications with frequency up to 1 MHz. The energy storage utility of the rectifiers is demonstrated by rectifying AC input signals and successfully charging home-made electrochemical on-chip microsupercapacitors. The results demonstrate that integrated, all-oxide thin film rectifiers can be used for on-chip capacitive energy storage. | |
dc.description.sponsorship | The research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). | |
dc.description.sponsorship | Funding: King Abdullah University of Science and Technology | |
dc.publisher | Wiley | |
dc.relation.url | https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900531 | |
dc.rights | Archived with thanks to Advanced Electronic Materials | |
dc.subject | energy storage application | |
dc.subject | field-effect rectifier | |
dc.subject | transparent conducting oxides | |
dc.title | All-Oxide Thin Film Transistors and Rectifiers Enabling On-Chip Capacitive Energy Storage | |
dc.type | Article | |
dc.contributor.department | Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical Engineering Program | |
dc.contributor.department | Functional Nanomaterials and Devices Research Group | |
dc.contributor.department | Material Science and Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.contributor.department | Sensors Lab | |
dc.identifier.journal | Advanced Electronic Materials | |
dc.rights.embargodate | 2020-01-01 | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Integrated Circuits Lab, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt | |
dc.contributor.institution | Department of Physics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia | |
kaust.person | Wang, Zhenwei | |
kaust.person | Alshammari, Fwzah Hamud | |
kaust.person | Hota, Mrinal Kanti | |
kaust.person | Salama, Khaled N. | |
kaust.person | Alshareef, Husam N. |
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Material Science and Engineering Program
For more information visit: https://pse.kaust.edu.sa/study/academic-programs/material-science-and-engineering/Pages/default.aspx -
Sensors Lab
For more information visit: https://cemse.kaust.edu.sa/sensors -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/