Interview choice reveals your preference on the market: To improve job-resume matching through profiling memories
Type
Conference PaperKAUST Department
Computer Science ProgramComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2019-07-26Online Publication Date
2019-07-26Print Publication Date
2019Permanent link to this record
http://hdl.handle.net/10754/656763
Metadata
Show full item recordAbstract
Online recruitment services are now rapidly changing the landscape of hiring traditions on the job market. There are hundreds of millions of registered users with resumes, and tens of millions of job postings available on the Web. Learning good job-resume matching for recruitment services is important. Existing studies on job-resume matching generally focus on learning good representations of job descriptions and resume texts with comprehensive matching structures. We assume that it would bring benefits to learn the preference of both recruiters and job-seekers from previous interview histories and expect such preference is helpful to improve job-resume matching. To this end, in this paper, we propose a novel matching network with preference modeled. The key idea is to explore the latent preference given the history of all interviewed candidates for a job posting and the history of all job applications for a particular talent. To be more specific, we propose a profiling memory module to learn the latent preference representation by interacting with both the job and resume sides. We then incorporate the preference into the matching framework as an end-to-end learnable neural network. Based on the real-world data from an online recruitment platform namely “Boss Zhipin”, the experimental results show that the proposed model could improve the job-resume matching performance against a series of state-of-the-art methods. In this way, we demonstrate that recruiters and talents indeed have preference and such preference can improve job-resume matching on the job market.Citation
Yan, R., Le, R., Song, Y., Zhang, T., Zhang, X., & Zhao, D. (2019). Interview Choice Reveals Your Preference on the Market. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. doi:10.1145/3292500.3330963Sponsors
We thank the reviewers for their valuable comments. This work was supported by the National Key Research and Development Program of China (No. 2017YFC0804001), the National Science Foundation of China (NSFC No. 61876196, NSFC No. 61828302, and NSFC No. 61672058).Conference/Event name
25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019Additional Links
http://dl.acm.org/citation.cfm?doid=3292500.3330963ae974a485f413a2113503eed53cd6c53
10.1145/3292500.3330963