Recent Submissions

  • Isolation and sequence characterization of DNA-A genome of a new begomovirus strain associated with severe leaf curling symptoms of Jatropha curcas L.

    Chauhan, Sushma; Rahman, Hifzur; Mastan, Shaik G.; Sudheer, Pamidimarri D.V.N.; Reddy, Muppala P. (Gene, Elsevier BV, 2018-04-22) [Article]
    Begomoviruses belong to the family Geminiviridae are associated with several disease symptoms, such as mosaic and leaf curling in Jatropha curcas. The molecular characterization of these viral strains will help in developing management strategies to control the disease. In this study, J. curcas that was infected with begomovirus and showed acute leaf curling symptoms were identified. DNA-A segment from pathogenic viral strain was isolated and sequenced. The sequenced genome was assembled and characterized in detail. The full-length DNA-A sequence was covered by primer walking. The genome sequence showed the general organization of DNA-A from begomovirus by the distribution of ORFs in both viral and anti-viral strands. The genome size ranged from 2844 bp–2852 bp. Three strains with minor nucleotide variations were identified, and a phylogenetic analysis was performed by comparing the DNA-A segments from other reported begomovirus isolates. The maximum sequence similarity was observed with Euphorbia yellow mosaic virus (FN435995). In the phylogenetic tree, no clustering was observed with previously reported begomovirus strains isolated from J. curcas host. The strains isolated in this study belong to new begomoviral strain that elicits symptoms of leaf curling in J. curcas. The results indicate that the probable origin of the strains is from Jatropha mosaic virus infecting J. gassypifolia. The strains isolated in this study are referred as Jatropha curcas leaf curl India virus (JCLCIV) based on the major symptoms exhibited by host J. curcas.
  • TDZ-Induced Plant Regeneration in Jatropha curcas: A Promising Biofuel Plant

    Kumar, Nitish; Bhatt, Vacha D.; Mastan, Shaik G.; Reddy, Muppala P. (Thidiazuron: From Urea Derivative to Plant Growth Regulator, Springer Nature, 2018-03-24) [Book Chapter]
    In recent years, Jatropha curcas has pronounced attention due to its capacity of production of biodiesel. Uniform large-scale propagation of J. curcas is one of the significant keys that will eventually decide victory. Direct regeneration is one of the methods which help in the production of uniform and homogenous plant, and TDZ plays an important role in the production of plantlets by direct organogenesis in several number of plant species including J. curcas. Measuring the economical importance of J. curcas and the role of TDZ in shoot regeneration, the present book chapter briefly reviews the impact of TDZ on shoot bud induction from various explants of J. curcas.
  • Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillán, María José; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele (Frontiers in Microbiology, Frontiers Media SA, 2016-08-22) [Article]
    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.