• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Closing the Lab-to-Fab Gap with Inkjet-Printed Organic Photovoltaics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Khulud Almasabi - Thesis - Final Draft.pdf
    Size:
    6.171Mb
    Format:
    PDF
    Description:
    Khulud Almasabi - Thesis - Final Draft
    Download
    Type
    Thesis
    Authors
    Almasabi, Khulud M. cc
    Advisors
    Baran, Derya cc
    Committee members
    Inal, Sahika cc
    Shamim, Atif cc
    Program
    Material Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2019-08-08
    Permanent link to this record
    http://hdl.handle.net/10754/656602
    
    Metadata
    Show full item record
    Abstract
    Inkjet printing promises to be an invaluable technique for processing organic solar cells with key advantages such as low material consumption, freedom of design and compatibility with different types of flexible substrates making it suitable for large-area production. However, one concern about inkjet printed organic solar cells is the common use of chlorinated solvents during the ink formulation process. While chlorinated solvents suit the inkjet printing process due to their high boiling points, suitable viscosity, and excellent solubility of organic donor and acceptor compounds, they still pose some risks for both human health and the environment, excluding them from being the ultimate choice for large-area production. As a step towards commercialization of OPV, we demonstrated the possibility to close the laboratory to fabrication gap, through the engineering of environmentally friendly inks, using a blend of non-halogenated benzene derivatives solvents optimized to meet the viscosity and surface tension requirements for the inkjet printing process. Starting from using the non-fullerene acceptor O-IDTBR combined with the commercially available donor polymer P3HT we obtained solar cell device with efficiency up to 4.73% - the best efficiency achieved by the P3HT:O-IDTBR system processed with all non-halogenated solvents via inkjet printing. We also delivered highly transparent active layer with device power conversion efficiency of up to 10% with a highly efficient blend of polymer donor PTB7-Th in combination with the ultranarrow band gap NFA IEICO-4F, using hydrocarbons solvent. Lastly, we demonstrated both high efficiency, transparency, and stability by presenting a novel approach based on NFAs consisting of lowering the donor:acceptor ratio in the photoactive layer ink formulations, resulting in more stable devices with comparable power conversion efficiencies to those achieved by lab methods. This breakthrough in ink engineering paves the way in closing the lab-to-fab gap in organic photovoltaic using the low-cost, high throughput inkjet printing technology while considering both environmental and health-conscious mass production and device stability of organic photovoltaics.
    DOI
    10.25781/KAUST-66ZB4
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-66ZB4
    Scopus Count
    Collections
    Theses; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.