Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction.
Type
ArticleAuthors
Suzuki, Keiichiro
Yamamoto, Mako
Hernandez-Benitez, Reyna
Li, Zhe
Wei, Christopher
Soligalla, Rupa Devi
Aizawa, Emi
Hatanaka, Fumiyuki
Kurita, Masakazu
Reddy, Pradeep

Ocampo, Alejandro
Hishida, Tomoaki
Sakurai, Masahiro
Nemeth, Amy N
Nuñez Delicado, Estrella
Campistol, Josep M
Magistretti, Pierre J.

Guillen, Pedro
Rodriguez Esteban, Concepcion
Gong, Jianhui
Yuan, Yilin
Gu, Ying
Liu, Guang-Hui

López-Otín, Carlos

Wu, Jun

Zhang, Kun

Izpisua Belmonte, Juan Carlos
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionBioscience Program
Date
2019-08-23Embargo End Date
2020-02-25Permanent link to this record
http://hdl.handle.net/10754/656597
Metadata
Show full item recordAbstract
In vivo genome editing represents a powerful strategy for both understanding basic biology and treating inherited diseases. However, it remains a challenge to develop universal and efficient in vivo genome-editing tools for tissues that comprise diverse cell types in either a dividing or non-dividing state. Here, we describe a versatile in vivo gene knock-in methodology that enables the targeting of a broad range of mutations and cell types through the insertion of a minigene at an intron of the target gene locus using an intracellularly linearized single homology arm donor. As a proof-of-concept, we focused on a mouse model of premature-aging caused by a dominant point mutation, which is difficult to repair using existing in vivo genome-editing tools. Systemic treatment using our new method ameliorated aging-associated phenotypes and extended animal lifespan, thus highlighting the potential of this methodology for a broad range of in vivo genome-editing applications.Citation
Suzuki, K., Yamamoto, M., Hernandez-Benitez, R., Li, Z., Wei, C., Soligalla, R. D., … Izpisua Belmonte, J. C. (2019). Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Research. doi:10.1038/s41422-019-0213-0Sponsors
We are grateful to M. Schwarz and P. Schwarz for administrative help; D. O’Keefe and S. Tsuji for help with manuscript preparation; M. Kay and Z.Y. Chen for sharing experimental materials; J. Naughton and J. Marlett for AAV production; K. Peterson and Y. Gu for helping the measurement of heart rate; U. Manor and K. Diffenderfer for imaging; K. McIntyre for mouse histology processing and J. Li for helping the molecular work; K. Sumiyama for data analysis. M.Y. was partially supported by 2016 Salk Women & Science Special Award. K.S. was supported by JSPS KAKENHI (15K21762 and 18H04036), Takeda Science Foundation, The Uehara Memorial Foundation, National Institutes of Natural Sciences (BS291007), The Sumitomo Foundation (170220), The Naito Foundation, The Kurata Grants (1350), Mochida Memorial Foundation, and The Inamori Foundation. This research was supported by Guangdong Provincial Key Laboratory of Genome Read and Write (No. 2017B030301011), Guangdong Provincial Academician Workstation of BGI Synthetic Genomics (No. 2017B090904014) and Shenzhen Peacock Plan (No. KQTD20150330171505310). J.C.I.B. was supported by The Leona M. and Harry B. Helmsley Charitable Trust (2012-PG-MED002), the G. Harold and Leila Y. Mathers Charitable Foundation, NIH (R01HL123755 and 5 DP1 DK113616), The Progeria Research Foundation, The Glenn Foundation, KAUST, The Moxie Foundation, Fundación Dr. Pedro Guillen, AFE and Universidad Católica San Antonio de Murcia (UCAM).Publisher
Springer NatureJournal
Cell researchAdditional Links
http://www.nature.com/articles/s41422-019-0213-0ae974a485f413a2113503eed53cd6c53
10.1038/s41422-019-0213-0