Show simple item record

dc.contributor.authorNdoye, Ibrahima
dc.contributor.authorKirati, Taous-Meriem Laleg
dc.date.accessioned2019-08-21T13:43:58Z
dc.date.available2019-08-21T13:43:58Z
dc.date.issued2019-08-15
dc.identifier.citationN’Doye, I., & Kirati, T.-M. L. (2019). Stability and Trajectories Analysis of a Fractional Generalization of Simple Pendulum Dynamic Equation. 2019 18th European Control Conference (ECC). doi:10.23919/ecc.2019.8795821
dc.identifier.doi10.23919/ecc.2019.8795821
dc.identifier.urihttp://hdl.handle.net/10754/656576
dc.description.abstractIn this paper, we present the dynamics of the simple pendulum by using the fractional-order derivatives. Equations of motion are proposed for cases without input and external forcing. We use the fractional-order Euler-Lagrange equations to obtain the fractional-order dynamic equation of the simple pendulum. We perform equilibria analysis, indicate the conditions where stability dynamics can be observed for both integer and fractional-order models. Finally, phase diagrams have been plotted to visualize the effect of the fractional-order derivatives.
dc.description.sponsorshipThe research reported herein is supported by the King Abdullah University of Science and Technology (KAUST).
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/8795821/
dc.rightsArchived with thanks to 2019 18th European Control Conference (ECC)
dc.subjectSimple pendulum model
dc.subjectnonlinear systems
dc.subjectfractional-order dynamics
dc.subjectfractional-order Euler-Lagrangian
dc.subjectstability analysis
dc.subjecttrajectories analysis
dc.subjectnumerical simulations
dc.titleStability and Trajectories Analysis of a Fractional Generalization of Simple Pendulum Dynamic Equation
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.date25-28 June 2019
dc.conference.name2019 18th European Control Conference (ECC)
dc.conference.locationNaples, Italy
dc.eprint.versionPost-print
kaust.personNdoye, Ibrahima
kaust.personKirati, Taous-Meriem Laleg
refterms.dateFOA2019-10-07T13:36:54Z
dc.date.published-online2019-08-15
dc.date.published-print2019-06


Files in this item

Thumbnail
Name:
IEEE_ECC_2019.pdf
Size:
1.934Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record