Structured Regularization of Functional Map Computations

Embargo End Date
2020-08-12

Type
Article

Authors
Ren, Jing
Panine, Mikhail
Wonka, Peter
Ovsjanikov, Maks

KAUST Department
Computer Science Program
Visual Computing Center (VCC)
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

KAUST Grant Number
CRG2017
CRG2018-3730

Online Publication Date
2019-08-12

Print Publication Date
2019-08

Date
2019-08-12

Abstract
We consider the problem of non-rigid shape matching using the functional map framework. Specifically, we analyze a commonly used approach for regularizing functional maps, which consists in penalizing the failure of the unknown map to commute with the Laplace-Beltrami operators on the source and target shapes. We show that this approach has certain undesirable fundamental theoretical limitations, and can be undefined even for trivial maps in the smooth setting. Instead we propose a novel, theoretically well-justified approach for regularizing functional maps, by using the notion of the resolvent of the Laplacian operator. In addition, we provide a natural one-parameter family of regularizers, that can be easily tuned depending on the expected approximate isometry of the input shape pair. We show on a wide range of shape correspondence scenarios that our novel regularization leads to an improvement in the quality of the estimated functional, and ultimately pointwise correspondences before and after commonly-used refinement techniques.

Citation
Ren, J., Panine, M., Wonka, P., & Ovsjanikov, M. (2019). Structured Regularization of Functional Map Computations. Computer Graphics Forum, 38(5), 39–53. doi:10.1111/cgf.13788

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments and helpful suggestions. Parts of this work were supported by the KAUST OSR Awards No. CRG2017-3426 and CRG2018-3730, a gift from the NVIDIA Corporation, and the ERC Starting Grant No. 758800 (EXPROTEA).

Publisher
Wiley

Journal
Computer Graphics Forum

DOI
10.1111/cgf.13788

arXiv
2009.14624

Additional Links
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13788

Permanent link to this record