Show simple item record

dc.contributor.authorRagab, Alaa I.
dc.contributor.authorKaturi, Krishna
dc.contributor.authorAli, Muhammad
dc.contributor.authorSaikaly, Pascal
dc.date.accessioned2019-08-20T06:57:12Z
dc.date.available2019-08-20T06:57:12Z
dc.date.issued2019-07-31
dc.identifier.citationRagab, A., Katuri, K. P., Ali, M., & Saikaly, P. E. (2019). Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01747
dc.identifier.doi10.3389/fmicb.2019.01747
dc.identifier.urihttp://hdl.handle.net/10754/656542
dc.description.abstractMicrobial electrosynthesis (MES) has been gaining considerable interest as the next step in the evolution of microbial electrochemical technologies. Understanding the niche biocathode environment and microbial community is critical for further developing this technology as the biocathode is key to product formation and efficiency. MES is generally operated to enrich a specific functional group (e.g., methanogens or homoacetogens) from a mixed-culture inoculum. However, due to differences in H2 and CO2 availability across the cathode surface, competition and syntrophy may lead to overall variability and significant beta-diversity within and between replicate reactors, which can affect performance reproducibility. Therefore, this study aimed to investigate the distribution and potential spatial variability of the microbial communities in MES methanogenic biocathodes. Triplicate methanogenic biocathodes were enriched in microbial electrolysis cells for 5 months at an applied voltage of 0.7 V. They were then transferred to triplicate dual-chambered MES reactors and operated at -1.0 V vs. Ag/AgCl for six batches. At the end of the experiment, triplicate samples were taken at different positions (top, center, bottom) from each biocathode for a total of nine samples for total biomass protein analysis and 16S rRNA gene amplicon sequencing. Microbial community analyses showed that the biocathodes were highly enriched with methanogens, especially the hydrogenotrophic methanogen family Methanobacteriaceae, Methanobacterium sp., and the mixotrophic Methanosarcina sp., with an overall core community representing > 97% of sequence reads in all samples. There was no statistically significant spatial variability (p > 0.05) observed in the distribution of these communities within and between the reactors. These results suggest deterministic community assembly and indicate the reproducibility of electromethanogenic biocathode communities, with implications for larger-scale reactors.
dc.description.sponsorshipThis work was funded by Competitive Research Grant (URF/1/2985-01-01) to PS from King Abdullah University of Science and Technology
dc.publisherFrontiers Media SA
dc.relation.urlhttps://www.frontiersin.org/article/10.3389/fmicb.2019.01747/full
dc.rightsRagab, Katuri, Ali and Saikaly. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectelectromethanogenesis
dc.subjectspatial variability
dc.subjectCO2 reduction
dc.subjectbiocathode
dc.subjectmicrobial community assembly
dc.titleEvidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community.
dc.typeArticle
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)
dc.identifier.journalFrontiers in microbiology
dc.eprint.versionPublisher's Version/PDF
kaust.personRagab, Alaa I.
kaust.personKaturi, Krishna
kaust.personAli, Muhammad
kaust.personSaikaly, Pascal E
kaust.grant.numberURF/1/2985-01-01
dc.relation.issupplementedbybioproject:PRJNA541055
refterms.dateFOA2019-08-20T06:58:13Z
display.relations<b>Is Supplemented By:</b><br/> <ul><li><i>[Bioproject]</i> <br/> Title: Electromethanogenic biocathode spatial variabilityPublication Date: 2019-05-04. bioproject: <a href="https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA541055" >PRJNA541055</a> Handle: <a href="http://hdl.handle.net/10754/666497" >10754/666497</a></a></li></ul>


Files in this item

Thumbnail
Name:
fmicb-10-01747.pdf
Size:
4.826Mb
Format:
PDF
Description:
Published version
Thumbnail
Name:
Data_Sheet_1_Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community.PDF
Size:
595.0Kb
Format:
PDF
Description:
Supplemental files

This item appears in the following Collection(s)

Show simple item record

Ragab, Katuri, Ali and Saikaly. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Except where otherwise noted, this item's license is described as Ragab, Katuri, Ali and Saikaly. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.