Show simple item record

dc.contributor.authorLiu, Mengxia
dc.contributor.authorChe, Fanglin
dc.contributor.authorSun, Bin
dc.contributor.authorVoznyy, Oleksandr
dc.contributor.authorProppe, Andrew
dc.contributor.authorMunir, Rahim
dc.contributor.authorWei, Mingyang
dc.contributor.authorQuintero-Bermudez, Rafael
dc.contributor.authorHu, Lilei
dc.contributor.authorHoogland, Sjoerd
dc.contributor.authorMandelis, Andreas
dc.contributor.authorAmassian, Aram
dc.contributor.authorKelley, Shana O.
dc.contributor.authorGarciá De Arquer, F. Pelayo
dc.contributor.authorSargent, Edward H.
dc.date.accessioned2019-08-08T08:38:34Z
dc.date.available2019-08-08T08:38:34Z
dc.date.issued2019-04-30
dc.identifier.citationLiu, M., Che, F., Sun, B., Voznyy, O., Proppe, A., Munir, R., … Sargent, E. H. (2019). Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. ACS Energy Letters, 4(6), 1225–1230. doi:10.1021/acsenergylett.9b00388
dc.identifier.doi10.1021/acsenergylett.9b00388
dc.identifier.urihttp://hdl.handle.net/10754/656427
dc.description.abstractColloidal quantum dots (CQDs), which benefit from a size-tuned bandgap, are a solution-processed material for infrared energy harvesting. This characteristic enables the fabrication of solar cells that form tandem devices with silicon. Unfortunately, in the case of CQDs having diameters sufficiently large (>4 nm) so that the nanoparticles absorb light well beyond silicon's bandgap, conventional ligand exchanges fail. Here we report a strategy wherein short-chain carboxylates, used as a steric hindrance controller, facilitate the ligand exchange process on small-bandgap CQDs. We demonstrate that the net energy barrier to replace original capping ligands with lead halide anions is decreased when short carboxylates are involved. The approach produces more complete ligand exchange that enables improved packing density and monodispersity. This contributes to a 2-fold reduction in the trap state density compared to the best previously reported exchange. We demonstrate solar cells that achieve a record infrared photon-to-electron conversion efficiency at the excitonic peak.
dc.description.sponsorshipThis publication is based in part on work supported by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttp://pubs.acs.org/doi/10.1021/acsenergylett.9b00388
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Energy Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acsenergylett.9b00388.
dc.titleControlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentOffice of the VP
dc.contributor.departmentOrganic Electronics and Photovoltaics Group
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalACS Energy Letters
dc.rights.embargodate2020-06-14
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
dc.contributor.institutionDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
dc.contributor.institutionHelmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, Berlin 12489, Germany
dc.contributor.institutionCenter for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
dc.contributor.institutionDepartment of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
kaust.personMunir, Rahim
kaust.personAmassian, Aram
dc.date.published-online2019-04-30
dc.date.published-print2019-06-14


This item appears in the following Collection(s)

Show simple item record