Coherence-based time series clustering for statistical inference and visualization of brain connectivity
Name:
euclid.aoas.1560758435 (1).pdf
Size:
343.5Kb
Format:
PDF
Description:
Supplemental files
Name:
euclid.aoas.1560758435 (2).pdf
Size:
1.228Mb
Format:
PDF
Description:
Supplemental files
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
Date
2019-06-17Online Publication Date
2019-06-17Print Publication Date
2019-06Permanent link to this record
http://hdl.handle.net/10754/656304
Metadata
Show full item recordAbstract
We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display a high level of coordination as measured by “cluster-coherence.” While the most common approach to measure dependence between clusters is through pairs of single time series, our method proposes cluster coherence which measures dependence between pairs of whole clusters rather than between single elements. Thus it takes into account both the dependence between clusters and within channels in a cluster. The identified clusters contain time series that exhibit high cross-dependence in the spectral domain. Simulation studies demonstrate that the proposed HCC method is competitive with the other feature-based clustering methods. To study clustering in a network of multichannel electroencephalograms (EEG) during an epileptic seizure, we applied the HCC method and identified connectivity on alpha (8, 12) Hertz and beta (16, 30) Hertz bands at different phases of the recording: before an epileptic seizure, during the early and middle phases of the seizure episode. To increase the potential impact of HCC in neuroscience, we also developed the HCC-Vis, an R-Shiny app (RStudio), which can be downloaded from https://carolinaeuan.shinyapps.io/hcc-vis/.Citation
Euán, C., Sun, Y., & Ombao, H. (2019). Coherence-based time series clustering for statistical inference and visualization of brain connectivity. The Annals of Applied Statistics, 13(2), 990–1015. doi:10.1214/18-aoas1225Publisher
Institute of Mathematical StatisticsJournal
Annals of Applied StatisticsAdditional Links
https://projecteuclid.org/euclid.aoas/1560758435ae974a485f413a2113503eed53cd6c53
10.1214/18-AOAS1225