Show simple item record

dc.contributor.advisorJones, Burton
dc.contributor.authorShort, George
dc.date.accessioned2019-08-01T11:30:04Z
dc.date.available2019-08-01T11:30:04Z
dc.date.issued2019-08
dc.identifier.doi10.25781/KAUST-NN1G6
dc.identifier.urihttp://hdl.handle.net/10754/656295
dc.description.abstractCoral reefs are priority habitats which are vulnerable to natural and anthropogenic disturbances. These can cause phase shifts from coral habitat to degraded algal-dominated states – and consequent changes in the distribution, abundance and activity of associated fish species. In the eastern Red Sea, human-induced reef degradation is likely to increase with planned development of the Saudi Arabian coast and the changing climate. The present study therefore investigates the ecological effects of coral-algal phase shifts in reef-associated fish communities, using naturally occurring within-reef benthic zones as proxies for levels of habitat health - with a focus on how these responses differ temporally. These zones were dominated by: hard coral (coral zone), coral and turf algae (transition zone), and macroalgal canopies (algal zone). Six inshore reef areas, were studied in periods with low and high densities of Sargassum in the algal zones (May and November respectively). Community composition was assessed via visual census and predation activity predicted using two proxies: in situ experiments and biomass of carnivores. In both periods, we observed distinct fish communities in each zone - with reduced species richness, Shannon-Wiener diversity and predation intensity, from the coral to the algal zones. Decreases in the abundance and biomass of fish also occurred from the coral to algal zones in May but a spike, as well as a shift in community composition, occurred in the algal zone in November. This shift is attributed to the vast increases in grazer biomass, predominantly Siganus luridus, associated with the November bloom of Sargassum canopies. The present study established, the composition and functioning of Red Sea fish communities is spatially and temporally affected by increased macroalgal dominance. This finding supports the need for herbivorous fish to be made a conservation priority in the management and conservation of reef systems in order to prevent phase shifts to algal dominated states. We conclude that if Red Sea reefs are allowed to shift to alternate states, depending on the density of macroalgal canopies, reefs may support high biomass and abundance of fish but the functioning of the fish community will be altered and the diversity lost.
dc.language.isoen
dc.subjectReef Ecosystems
dc.subjectPhase Shifts
dc.subjectMacroalgae
dc.subjectFish communities
dc.subjectpredation
dc.subjectBenthic Habitat
dc.titleVariations in reef-associated fish communities in response to different benthic states in the east central Red Sea
dc.typeThesis
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberBerumen, Michael
dc.contributor.committeememberCarvalho, Susana
thesis.degree.disciplineMarine Science
thesis.degree.nameMaster of Science
kaust.request.doiyes


Files in this item

Thumbnail
Name:
Georgina Short Thesis.pdf
Size:
1.304Mb
Format:
PDF
Description:
Georgina Short Thesis

This item appears in the following Collection(s)

Show simple item record