Earthquake Cycle Modelling of Multi-segmented Faults: Dynamic Rupture and Ground Motion Simulation of the 1992 M w 7.3 Landers Earthquake
Name:
Galvez2019_Article_EarthquakeCycleModellingOfMult.pdf
Size:
7.880Mb
Format:
PDF
Description:
Published version
Type
ArticleKAUST Department
Earth Science and EngineeringEarth Science and Engineering Program
Extreme Computing Research Center
Physical Science and Engineering (PSE) Division
Date
2019-06-13Online Publication Date
2019-06-13Print Publication Date
2020-05Permanent link to this record
http://hdl.handle.net/10754/656269
Metadata
Show full item recordAbstract
We perform earthquake cycle simulations with the goal of studying the characteristics of source scaling relations and strong ground motions in multi-segmented fault ruptures. The 1992 Mw 7.3 Landers earthquake is chosen as a target earthquake to validate our methodology. The model includes the fault geometry for the three-segmented Landers rupture from the SCEC community fault model, extended at both ends to a total length of 200 km, and limited to a depth to 15 km. We assume the faults are governed by rate-and-state (RS) friction, with a heterogeneous, correlated spatial distribution of characteristic weakening distance Dc. Multiple earthquake cycles on this non-planar fault system are modeled with a quasi-dynamic solver based on the boundary element method, substantially accelerated by implementing a hierarchical-matrix method. The resulting seismic ruptures are recomputed using a fully-dynamic solver based on the spectral element method, with the same RS friction law. The simulated earthquakes nucleate on different sections of the fault, and include events similar to the Mw 7.3 Landers earthquake. We obtain slip velocity functions, rupture times and magnitudes that can be compared to seismological observations. The simulated ground motions are validated by comparison of simulated and recorded response spectra.Citation
Galvez, P., Somerville, P., Petukhin, A., Ampuero, J.-P., & Peter, D. (2019). Earthquake Cycle Modelling of Multi-segmented Faults: Dynamic Rupture and Ground Motion Simulation of the 1992 Mw 7.3 Landers Earthquake. Pure and Applied Geophysics, 177(5), 2163–2179. doi:10.1007/s00024-019-02228-xSponsors
This study was based on the 2017 research project ‘Examination for uncertainty of strong ground motion prediction for the inland crustal earthquakes’ by the Nuclear Regulation Authority (NRA), Japan. We would like to thank Dr. Andrew Bradley for providing the H-matrix module and his valuable assistance in the usage of this library. The Super Computer Shaheen II at KAUST University has been used to run the models presented in this study. Shaheen II is a Cray XC40 delivering over 7.2 Pflop/s of theoretical peak performance. Overall the system has a total of 197,568 processor cores and 790 TB of aggregate memory. J. P. A. acknowledges funding from the French government, through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR-15-IDEX-01. Special thanks to Ueli Schindler for all his unconditional support on this work at AECOM Switzerland Office.Publisher
Birkhauser Verlag AGJournal
Pure and Applied GeophysicsAdditional Links
http://link.springer.com/10.1007/s00024-019-02228-xae974a485f413a2113503eed53cd6c53
10.1007/s00024-019-02228-x
Scopus Count
Except where otherwise noted, this item's license is described as This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.