• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Nitrous oxide in the northern Gulf of Aqaba and the central Red Sea

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bange_ertal_DSR_2019_N2O.pdf
    Size:
    1.799Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Embargo End Date:
    2021-07-01
    Download
    Type
    Article
    Authors
    Bange, Hermann W.
    Kock, Annette
    Pelz, Nicole
    Schmidt, Mark
    Schütte, Florian
    Walter, Sylvia
    Post, Anton F.
    Jones, Burton cc
    Kürten, Benjamin cc
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Marine Science Program
    Marine Science and Engineering
    Red Sea Research Center
    Red Sea Research Center (RSRC)
    Date
    2019-07
    Embargo End Date
    2021-07-01
    Permanent link to this record
    http://hdl.handle.net/10754/656123
    
    Metadata
    Show full item record
    Abstract
    Nitrous oxide (N2O) is a climate-relevant atmospheric trace gas. It is produced as an intermediate of the nitrogen cycle. The open and coastal oceans are major sources of atmospheric N2O. However, its oceanic distribution is still largely unknown. Here we present the first measurements of the water column distribution of N2O in the Gulf of Aqaba and the Red Sea. Samples for N2O depth profiles were collected at the time-series site Station A in the northern Gulf of Aqaba (June and September 2003, and February 2004) and at several stations in the central Red Sea (October 2014, January and August 2016). Additionally, we measured N2O concentrations in brine pool samples collected in the northern and central Red Sea (January 2005 and August 2016). In the Gulf of Aqaba, N2O surface concentrations ranged from 6 to 8 nmol L−1 (97–111% saturation) and were close to the equilibrium with the overlying atmosphere. A pronounced temporal variability of the N2O water column distribution was observed. We suggest that this variability is a reflection of the interplay between N2O production by nitrification and its consumption by N2 fixation in the layers below 150 m during summer. N2O surface concentrations and saturations in the central Red Sea basin ranged from 2 to 9 nmol L−1 (43–155% saturation). A pronounced temporal variability with significant supersaturation in October 2014 and undersaturation in January and August 2016 was observed in the surface layer. In October 2014, N2O in the water column seemed to result from production via nitrification. Low N2O water column concentrations in January and August 2016 indicated a significant removal of N2O. We speculate that either in-situ consumption or remote loss processes of N2O such as denitrification in coastal regions were responsible for this difference. Strong meso- and submesoscale processes might have transported the coastal signals across the Red Sea. In addition, enhanced N2O concentrations of up to 39 nmol L−1 were found at the seawater-brine pool interfaces which point to an N2O production via nitrification and/or denitrification at low O2 concentrations. Our results indicate that the Red Sea and the Gulf of Aqaba are unique natural laboratories for the study of N2O production and consumption pathways under extreme conditions in one of the warmest and most saline region of the global oceans.
    Sponsors
    We thank the chief scientists of the Station A sampling trips, the RS05 cruise, and I. Schulz (NC4 chief scientist), as well as the crews and scientific parties of R/V Queen of Sheba, R/V Thuwal, and R/V Urania for their support at sea and assistance with sample collections. CTD and nutrient data from Station A were provided by the ‘Israel National Monitoring Program of the Gulf of Eilat’ and are available from https://iui-eilat.huji.ac.il/research/nmpabout.aspx. The N2O data presented here have been archived in MEMENTO (The MarinE MethanE and NiTrous Oxide database) and are available from https://memento.geomar.de. Furthermore, we thank the Ocean Biology Processing Group (OBPG) for data service regarding the satellite data, which is freely available at https://oceancolor.gsfc.nasa.gov. We thank Damian Arévalo-Martínez and Carolin Löscher for helpful discussions of the results and comments on an early version of the manuscript. We thank two anonymous reviewers for their helpful comments. The EU's EUROMARGINS project 01-LEC-EMA21F (STO110/39-1) funded the RS05 cruise. SW's work in the Gulf of Aqaba was supported by the Deutsche Forschungsgemeinschaft through grant WA1434/1. FS was supported by the DFG funded Collaborative Research Centre 754 (SFB 754) ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’. The research reported in this publication was supported by the King Abdullah University of Science and Technology (KAUST) through the baseline funds to BJ and the Competitive Centre Funding program. This is a contribution to the 2nd International Indian Ocean Expedition (IIOE-2) programme (www.iioe-2.incois.gov.in/).
    Publisher
    Elsevier BV
    Journal
    Deep Sea Research Part II: Topical Studies in Oceanography
    DOI
    10.1016/j.dsr2.2019.06.015
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0967064518302418
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.dsr2.2019.06.015
    Scopus Count
    Collections
    Articles; Biological and Environmental Sciences and Engineering (BESE) Division; Red Sea Research Center (RSRC); Marine Science Program

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.