PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY
Type
ArticleAuthors
Johansen, K.Morton, M. J. L.
Malbeteau, Yoann
Aragon Solorio, Bruno Jose Luis

Almashharawi, Samir

Ziliani, Matteo
Angel, Yoseline

Fiene, Gabriele
Negrão, Sónia
Mousa, M. A. A.
Tester, Mark A.

McCabe, Matthew

KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionCenter for Desert Agriculture
Earth System Observation and Modelling
Environmental Science and Engineering
Environmental Science and Engineering Program
Plant Science
The Salt Lab
Water Desalination & Reuse Center
Water Desalination and Reuse Research Center (WDRC)
Date
2019-06-04Permanent link to this record
http://hdl.handle.net/10754/656015
Metadata
Show full item recordAbstract
Biomass and yield are important variables used for assessing agricultural production. However, these variables are difficult to estimate for individual plants at the farm scale and may be affected by abiotic stressors such as salinity. In this study, the wild tomato species, Solanum pimpinellifolium, was evaluated through field and UAV-based assessment of 600 control and 600 salt-treated plants. The aim of this research was to determine, if UAV-based imagery, collected one, two, four, six, seven and eight weeks before harvest could predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest and if predictions varied for control and salt-treated plants. A Random Forest approach was used to model biomass and yield. The results showed that shape features such as plant area, border length, width and length had the highest importance in the random forest models. A week prior to harvest, the explained variance of fresh shoot mass, number of fruits and yield mass were 86.60%, 59.46% and 61.09%, respectively. The explained variance was reduced as a function of time to harvest. Separate models may be required for predicting yield of salt-stressed plants, whereas the prediction of yield for control plants was less affected if the model included salt-stressed plants. This research demonstrates that it is possible to predict biomass and yield of tomato plants up to four weeks prior to harvest, and potentially earlier in the absence of severe weather events.Citation
Johansen, K., Morton, M. J. L., Malbeteau, Y., Aragon, B., Al-Mashharawi, S., Ziliani, M., … McCabe, M. F. (2019). PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W13, 407–411. doi:10.5194/isprs-archives-xlii-2-w13-407-2019Sponsors
We would like to thank all the workers at the King Abdulaziz University Agricultural Research Station in Hada Al-Sham for their extensive help with removal of weeds, plant maintenance and harvesting. Khadija Zemmouri and Dinara Utarbayeva prepared plots and undertook sowing of all plants.Publisher
Copernicus GmbHJournal
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesAdditional Links
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/407/2019/ae974a485f413a2113503eed53cd6c53
10.5194/isprs-archives-xlii-2-w13-407-2019
Scopus Count
Except where otherwise noted, this item's license is described as This work is distributed under the Creative Commons Attribution 4.0 License.