Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution
Type
ArticleAuthors
Liu, LingmeiChen, Zhijie

Wang, Jianjian

Zhang, Daliang

Zhu, Yihan
Ling, Sanliang

Huang, Kuo-Wei

Belmabkhout, Youssef

Adil, Karim

Zhang, Yuxin
Slater, Ben

Eddaoudi, Mohamed

Han, Yu

KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Science Program
Electron Microscopy
Functional Materials Design, Discovery and Development (FMD3)
Homogeneous Catalysis Laboratory (HCL)
KAUST Catalysis Center (KCC)
Nanostructured Functional Materials (NFM) laboratory
Physical Science and Engineering (PSE) Division
KAUST Grant Number
FCC/1/1972-19Date
2019-05-13Embargo End Date
2019-11-13Submitted Date
2018-06-04Permanent link to this record
http://hdl.handle.net/10754/655981
Metadata
Show full item recordAbstract
Defect engineering of metal–organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determining the structures of defects in MOFs—either point defects or extended ones—has proved challenging owing to the difficulty of directly probing local structures in these typically fragile crystals. Here we report the real-space observation, with sub-unit-cell resolution, of structural defects in the catalytic MOF UiO-66 using a combination of low-dose transmission electron microscopy and electron crystallography. Ordered ‘missing linker’ and ‘missing cluster’ defects were found to coexist. The missing-linker defects, reconstructed three-dimensionally with high precision, were attributed to terminating formate groups. The crystallization of the MOF was found to undergo an Ostwald ripening process, during which the defects also evolve: on prolonged crystallization, only the missing-linker defects remained. These observations were rationalized through density functional theory calculations. Finally, the missing-cluster defects were shown to be more catalytically active than their missing-linker counterparts for the isomerization of glucose to fructose.Citation
Liu, L., Chen, Z., Wang, J., Zhang, D., Zhu, Y., Ling, S., … Han, Y. (2019). Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 11(7), 622–628. doi:10.1038/s41557-019-0263-4Sponsors
This research was supported by Competitive Center Funds (FCC/1/1972-19) to Y.H. and M.E. from King Abdullah University of Science and Technology. This research used resources of the Core Labs of King Abdullah University of Science and Technology. Yi.Z. acknowledges financial support from the National Natural Science Foundation of China (21771161) and the Thousand Talents Program for Distinguished Young Scholars. S.L. and B.S. are thankful to the Materials Chemistry Consortium (EPSRC: EP/L000202) for provision of computer time on ARCHER UK National Supercomputing Service. B.S. acknowledges the Royal Society for financial support through an industry fellowship (F160062). The authors acknowledge helpful discussions with A. Goodwin, M. Cliffe and G. Shearer.Publisher
Springer NatureJournal
Nature ChemistryPubMed ID
31086300Additional Links
http://www.nature.com/articles/s41557-019-0263-4ae974a485f413a2113503eed53cd6c53
10.1038/s41557-019-0263-4
Scopus Count
Related articles
- Defect Engineering in Metal-Organic Framework Nanocrystals: Implications for Mechanical Properties and Performance.
- Authors: Möslein AF, Donà L, Civalleri B, Tan JC
- Issue date: 2022 May 27
- Metal-Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks.
- Authors: Gutov OV, González Hevia M, Escudero-Adán EC, Shafir A
- Issue date: 2015 Sep 8
- Engineering a Highly Defective Stable UiO-66 with Tunable Lewis- Brønsted Acidity: The Role of the Hemilabile Linker.
- Authors: Feng X, Hajek J, Jena HS, Wang G, Veerapandian SKP, Morent R, De Geyter N, Leyssens K, Hoffman AEJ, Meynen V, Marquez C, De Vos DE, Van Speybroeck V, Leus K, Van Der Voort P
- Issue date: 2020 Feb 12
- Correlated missing linker defects increase thermal conductivity in metal-organic framework UiO-66.
- Authors: Islamov M, Boone P, Babaei H, McGaughey AJH, Wilmer CE
- Issue date: 2023 Jun 21
- Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption.
- Authors: Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W
- Issue date: 2013 Jul 17