• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Consequences of Coral-Algal Phase Shifts for Tropical Reef Ecosystem Functioning

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Roth_PhD Dissertation_Final.pdf
    Size:
    5.214Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Download
    Type
    Dissertation
    Authors
    Roth, Florian cc
    Advisors
    Jones, Burton cc
    Committee members
    Moran, Xose Anxelu G. cc
    Haas, Andreas
    Wild, Christian
    Daffonchio, Daniele cc
    Carvalho, Susana cc
    Program
    Marine Science
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2019-07
    Embargo End Date
    2020-07-08
    Permanent link to this record
    http://hdl.handle.net/10754/655945
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-07-08.
    Abstract
    Tropical coral reefs provide important ecosystem goods and services that are supported by one or more ecosystem functions (e.g., recruitment, primary production, calcification, and nutrient recycling). Scleractinian corals drive most of these functions, but a combination of global and local anthropogenic stressors has caused persistent shifts from coral- to algae-dominated benthic reef communities globally. Such phase shifts likely have major consequences for ecosystem functions; yet, related knowledge is scarce in general, but particularly at the community level, under ‘in situ’ conditions, and under the influence of changing environmental variables. Thus, we conducted a series of interconnected in situ experiments in coral- and algae-dominated reef communities in the central Red Sea, combining traditional community ecology approaches with novel metabolic and biogeochemical assessments from December 2016 to January 2018. Specifically, we (i) examined the influence of coral-algal phase shifts on recruitment and succession patterns, (ii) assessed the role of benthic pioneer communities in reef carbon and nitrogen dynamics, (iii) developed a novel approach to measure functions of structurally complex reef communities in situ, and (iv) quantified biogeochemical functions of mature coral- and algae-dominated reef communities. The findings suggest that coral-algal phase shifts fundamentally modify critical reef functions at different levels of biological organization, namely from pioneer to mature reef communities. For example, community shifts, through a lower habitat complexity and grazing pressure, decreased the number of coral recruits by >50 %, thereby inhibiting the replenishment of adult coral populations. At the same time, a 30 % higher productivity (annual mean) and increased organic carbon retention in algae-dominated communities supported a fast biomass accumulation and community growth, altering the habitat-specific community metabolism and reef biogeochemistry. Seasonal warming amplified these functional differences between coral- and algae-dominated communities, likely promoting a positive feedback loop of reef degradation under predicted ocean warming. Overall, this dissertation provides quantitative data on critical functions of classical and phase shifted novel reef communities, on tipping points for the collapse of community functions, and potential future winners and losers. The knowledge gained with this thesis helps, thereby, to understand how phase-shifted reef ecosystems function and which services will be generated in comparison to coral-dominated reefs under near-future stress scenarios.
    Citation
    Roth, F. (2019). Consequences of Coral-Algal Phase Shifts for Tropical Reef Ecosystem Functioning. KAUST Research Repository. https://doi.org/10.25781/KAUST-K6KP2
    DOI
    10.25781/KAUST-K6KP2
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-K6KP2
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Marine Science Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.