Show simple item record

dc.contributor.authorRen, Zhongjie
dc.contributor.authorLu, Yi
dc.contributor.authorYao, Hsin-Hung
dc.contributor.authorSun, Haiding
dc.contributor.authorLiao, Che-Hao
dc.contributor.authorDai, Jiangnan
dc.contributor.authorChen, Changqing
dc.contributor.authorRyou, Jae-Hyun
dc.contributor.authorYan, Jianchang
dc.contributor.authorWang, Junxi
dc.contributor.authorLi, Jinmin
dc.contributor.authorLi, Xiaohang
dc.date.accessioned2019-07-04T11:35:20Z
dc.date.available2019-07-04T11:35:20Z
dc.date.issued2019-04
dc.identifier.citationRen, Z., Lu, Y., Yao, H.-H., Sun, H., Liao, C.-H., Dai, J., … Li, X. (2019). III-Nitride Deep UV LED Without Electron Blocking Layer. IEEE Photonics Journal, 11(2), 1–11. doi:10.1109/jphot.2019.2902125
dc.identifier.doi10.1109/JPHOT.2019.2902125
dc.identifier.urihttp://hdl.handle.net/10754/655917
dc.description.abstractAlGaN-based deep UV (DUV) LEDs generally employ a p-type electron blocking layer (EBL) to suppress electron overflow. However, Al-rich III-nitride EBL can result in challenging p-doping and large valence band barrier for hole injection as well as epitaxial complexity. As a result, wall plug efficiency (WPE) can be compromised. Our systematic studies of band diagram and carrier concentration reveal that carrier concentrations in the quantum well and electron overflow can be significantly impacted because of the slope variation of the quantum barrier (QB) conduction and valence bands, which in turn influence radiative recombination and optical output power. Remarkably, grading the Al composition from 0.60 to 0.70 for the 12-nm-thick AlGaN QB of the DUV LED without the EBL can lead to 13.5% higher output power and similar level of overflown electron concentration (~1 × 1015/cm3) as opposed to the conventional DUV LED with the p-type EBL. This paradigm is significant for the pursuit of higher WPE or shorter emission wavelength for DUV LEDs and lasers, as it provides a new direction for addressing electron overflow and hole injection issues.
dc.description.sponsorshipThe work of Z. Ren, Y. Lu, H.-H. Yao, H. Sun, C.-H. Liao, and X. Li was supported in part by King Abdullah University of Science and Technology (KAUST) Baseline BAS/1/1664-01-01, KAUST CRG URF/1/3437-01-01, GCC REP/1/3189-01-01; and in part by the National Natural Science Foundation of China under Grant 61774065. The work of Y. Lu, J. Yan, J. Wang, and J. Li was supported by the National Key R&D Program of China under Grants 2016YFB0400803 and 2016YFB0400802. The work of J. Dai and C. Chen was supported in part by the Key Project of Chinese National Development Programs under Grant 2018YFB0406602 and in part by the National Natural Science Foundation of China under Grant 61774065. The work of J.-H. Ryou was supported in part by KAUST under Contract OSR-2017-CRG6-3437.02 and in part by the Texas Center for Superconductivity at the University of Houston.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/8656506/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8656506
dc.rightsThis is under the open access.
dc.subjectAluminum gallium nitride
dc.subjectdeep UV LED
dc.subjectelectron blocking
dc.subjectelectron containing
dc.subjectelectron overflow.
dc.titleIII-Nitride Deep UV LED Without Electron Blocking Layer
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentElectrical Engineering
dc.contributor.departmentElectrical Engineering Program
dc.identifier.journalIEEE Photonics Journal
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
dc.contributor.institutionDepartment of Mechanical Engineering, Material Science and Engineering Program, Texas Center for Superconductivity at UH, and Advanced Manufacturing Institute, University of Houston, Houston, TX, USA
dc.contributor.institutionResearch and Development Center for Solid State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
kaust.personRen, Zhongjie
kaust.personLu, Yi
kaust.personYao, Hsin-Hung
kaust.personSun, Haiding
kaust.personLiao, Che-Hao
kaust.personLi, Xiaohang
kaust.grant.numberBAS/1/1664-01-01||URF/1/3437-01-01||REP/1/3189-01-01||OSR-2017-CRG6-3437.02
refterms.dateFOA2019-07-04T11:41:24Z


Files in this item

Thumbnail
Name:
08656506.pdf
Size:
4.720Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record