• Login
    View Item 
    •   Home
    • Events
    • WEP Library ePoster competition 2019
    • View Item
    •   Home
    • Events
    • WEP Library ePoster competition 2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Characterization of New Cell Factory Candidate for Saudi Arabia Application

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    P15.pdf
    Size:
    538.0Kb
    Format:
    PDF
    Download
    Type
    Poster
    Authors
    Mei Ng, Yi
    Azlin Mokhtar, Noor
    Ahmad Jamhor ,Suhaiza
    Archer ,John
    Date
    2019-01-13
    Permanent link to this record
    http://hdl.handle.net/10754/655723
    
    Metadata
    Show full item record
    Abstract
    Characterization of a New Cyanobacterial Cell Factory Strain for Saudi Arabia Application The use of photosynthetic cells as platform for bio-manufacturing is gaining increasing interest as it promises todeliver a sustainable, carbon neutral production system for biomass-derived chemicals, fuels and foods. SaudiArabia, in particular, is an excellent place for the deployment of photosynthetic cell factory as algal biotechnologyleverages the country’s abundant sunlight, availability of large CO2 point source emissions and access to Red Seaand Gulf waters (38 – 40 PSU). Currently a few model picocyanobacterial strain have been extensively studied forbiofuel and biochemical production, but these strains are limited to mild temperature, light and salinity conditionsthus cannot operate under Saudi Arabian climate. Therefore, in order to develop cyanobacterial cell factoryapplications for the Arabian Peninsula, there is a pressing need to discover and develop strains that can thriveunder extremely warm temperatures, high insolation and high salinity. In our study, a native unicellularSynechococcus sp. RSCCF101 strain isolated from the central Red Sea has been identified as a potential cellfactory candidate. Here we present physiological and genomic characterization of Synechococcus sp. RSCCF101to support its development as a new robust marine cell factory strain. Summary •Strain RSCCF101 is a candidate marine cyanobacterial cell factory strain isolated from the central Red Sea. It has an ovoid structure of about 1 µm length and 0.8 µm diameter (Figure 1) and 16S rRNA phylogenetic tree analysis places RSCCF101 within the Synechoccocus cluster (Figure 2). •The physiological profile showed that Synechococcus sp. RSCCF101 is both thermo- and halotolerant where it is able to grow efficiently at temperature up to 38°C and salinity between 10 PSU and 40 PSU, while remained viable at 50 PSU and 60 PSU (Figure 3A and 3B). These are desirable characteristics of a cell factory candidate as the chassis strain has to be able to survive the warm climate and intense insolation in Saudi Arabia (Nielsen, Archer et al. 2017). •Synechococcus sp. RSCCF101 is capable of producing high amount of phycocyanin under low light condition and glycogen under high light condition (Figure 4A to 4D). Phycocyanin is a valuable product for bioassay, bioimaging, pharmaceutical, food and cosmetics industry application (Chakdar and Pabbi 2016) while glycogen can be used as biofuel feedstock (Aikawa, Nishida et al. 2014). •Whole genome was successfully constructed for Synechococcus sp. RSCCF101 (Figure 5), from which a complete gene set involving in glycogen biosynthesis was identified (Figure 6). In addition, the genome contains three sets of cpcBA which encodes the alpha and beta subunits of phycocyanin (Figure 7). •Future work will include a more detailed genomic and transcriptomic profiling of RSCCF101 to establish the understanding of the physiological and molecular traits for synthetic biology purposes.
    Conference/Event name
    WEP Library ePoster competition 2019
    Additional Links
    https://epostersonline.com/wep2019/node/86
    Collections
    WEP Library ePoster competition 2019; Posters

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.