• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Distributed Learning with Compressed Gradient Differences

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1901.09269.pdf
    Size:
    1.905Mb
    Format:
    PDF
    Description:
    Preprint
    Download
    Type
    Preprint
    Authors
    Mishchenko, Konstantin cc
    Gorbunov, Eduard
    Takáč, Martin
    Richtarik, Peter cc
    KAUST Department
    Computer Science
    Computer Science Program
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2019-01-26
    Permanent link to this record
    http://hdl.handle.net/10754/653106
    
    Metadata
    Show full item record
    Abstract
    Training very large machine learning models requires a distributed computingapproach, with communication of the model updates often being the bottleneck.For this reason, several methods based on the compression (e.g., sparsificationand/or quantization) of the updates were recently proposed, including QSGD(Alistarh et al., 2017), TernGrad (Wen et al., 2017), SignSGD (Bernstein etal., 2018), and DQGD (Khirirat et al., 2018). However, none of these methodsare able to learn the gradients, which means that they necessarily suffer fromseveral issues, such as the inability to converge to the true optimum in thebatch mode, inability to work with a nonsmooth regularizer, and slowconvergence rates. In this work we propose a new distributed learningmethod---DIANA---which resolves these issues via compression of gradientdifferences. We perform a theoretical analysis in the strongly convex andnonconvex settings and show that our rates are vastly superior to existingrates. Our analysis of block-quantization and differences between $\ell_2$ and$\ell_\infty$ quantization closes the gaps in theory and practice. Finally, byapplying our analysis technique to TernGrad, we establish the first convergencerate for this method.
    Sponsors
    The work of Peter Richtarik was supported by the KAUST baseline funding scheme. The work of Martin Takac was partially supported by the U.S. National Science Foundation, under award numbers NSF:CCF:1618717, NSF:CMMI:1663256 and NSF:CCF:1740796.
    Publisher
    arXiv
    arXiv
    1901.09269
    Additional Links
    https://arxiv.org/pdf/1901.09269
    Collections
    Preprints; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.