Show simple item record

dc.contributor.authorLee, Kwangjae
dc.contributor.authorTuredi, Bekir
dc.contributor.authorSinatra, Lutfan
dc.contributor.authorZhumekenov, Ayan A.
dc.contributor.authorMaity, Partha
dc.contributor.authorDursun, Ibrahim
dc.contributor.authorNaphade, Rounak
dc.contributor.authorMerdad, Noor
dc.contributor.authorAlsalloum, Abdullah
dc.contributor.authorOh, Semi
dc.contributor.authorWehbe, Nimer
dc.contributor.authorHedhili, Mohamed N.
dc.contributor.authorKang, Chun Hong
dc.contributor.authorSubedi, Ram Chandra
dc.contributor.authorCho, Namchul
dc.contributor.authorKim, Jin Soo
dc.contributor.authorOoi, Boon S.
dc.contributor.authorMohammed, Omar F.
dc.contributor.authorBakr, Osman
dc.date.accessioned2019-05-21T13:22:17Z
dc.date.available2019-05-21T13:22:17Z
dc.date.issued2019-04-22
dc.identifier.citationLee KJ, Turedi B, Sinatra L, Zhumekenov AA, Maity P, et al. (2019) Perovskite-Based Artificial Multiple Quantum Wells. Nano Letters. Available: http://dx.doi.org/10.1021/acs.nanolett.9b00384.
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.doi10.1021/acs.nanolett.9b00384
dc.identifier.urihttp://hdl.handle.net/10754/653091
dc.description.abstractSemiconductor quantum well structures have been critical to the development of modern photonics and solid-state optoelectronics. Quantum level tunable structures have introduced new transformative device applications and afforded a myriad of groundbreaking studies of fundamental quantum phenomena. However, noncolloidal, III-V compound quantum well structures are limited to traditional semiconductor materials fabricated by stringent epitaxial growth processes. This report introduces artificial multiple quantum wells (MQWs) built from CsPbBr3 perovskite materials using commonly available thermal evaporator systems. These perovskite-based MQWs are spatially aligned on a large-area substrate with multiple stacking and systematic control over well/barrier thicknesses, resulting in tunable optical properties and a carrier confinement effect. The fabricated CsPbBr3 artificial MQWs can be designed to display a variety of photoluminescence (PL) characteristics, such as a PL peak shift commensurate with the well/barrier thickness, multiwavelength emissions from asymmetric quantum wells, the quantum tunneling effect, and long-lived hot-carrier states. These new artificial MQWs pave the way toward widely available semiconductor heterostructures for light-conversion applications that are not restricted by periodicity or a narrow set of dimensions.
dc.description.sponsorshipThe authors gratefully acknowledge the financial support provided by King Abdullah University of Science and Technology (KAUST). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1C1B5017953).
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b00384
dc.relation.urlhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b00384
dc.rightsThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
dc.rightsThis file is an open access version redistributed from: https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b00384
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.html
dc.subjectQuantum Well
dc.subjectFemtosecond Spectroscopy
dc.subjectPerovskite
dc.subjectBandgap Engineering
dc.subjectHot Carrier
dc.subjectCspbbr3
dc.titlePerovskite-Based Artificial Multiple Quantum Wells
dc.typeArticle
dc.contributor.departmentChemical Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentCore Labs
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentFunctional Nanomaterials Lab (FuNL)
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhotonics Laboratory
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentQuantum Solutions LLC, Thuwal 23955-6900, Kingdom of Saudi Arabia
dc.contributor.departmentSurface Science
dc.contributor.departmentUltrafast Laser Spectroscopy and Four-dimensional Electron Imaging Research Group
dc.identifier.journalNano Letters
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionSchool of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
dc.contributor.institutionDepartment of Energy Systems Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
dc.contributor.institutionDivision of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju 54896, Republic of Korea
kaust.personLee, Kwangjae
kaust.personTuredi, Bekir
kaust.personSinatra, Lutfan
kaust.personZhumekenov, Ayan A.
kaust.personMaity, Partha
kaust.personDursun, Ibrahim
kaust.personNaphade, Rounak
kaust.personMerdad, Noor
kaust.personAlsalloum, Abdullah
kaust.personWehbe, Nimer
kaust.personHedhili, Mohamed N.
kaust.personKang, Chun Hong
kaust.personSubedi, Ram
kaust.personOoi, Boon S.
kaust.personMohammed, Omar F.
kaust.personBakr, Osman M.
refterms.dateFOA2020-09-21T08:17:55Z
dc.date.published-online2019-04-22
dc.date.published-print2019-06-12


Files in this item

Thumbnail
Name:
acs.nanolett.9b00384.pdf
Size:
4.165Mb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record