Show simple item record

dc.contributor.authorHarrou, Fouzi
dc.contributor.authorTaghezouit, Bilal
dc.contributor.authorSun, Ying
dc.date.accessioned2019-05-21T13:21:36Z
dc.date.available2019-05-21T13:21:36Z
dc.date.issued2019-03-18
dc.identifier.citationHarrou F, Taghezouit B, Sun Y (2019) Improved $k$NN-Based Monitoring Schemes for Detecting Faults in PV Systems. IEEE Journal of Photovoltaics 9: 811–821. Available: http://dx.doi.org/10.1109/JPHOTOV.2019.2896652.
dc.identifier.issn2156-3381
dc.identifier.issn2156-3403
dc.identifier.doi10.1109/JPHOTOV.2019.2896652
dc.identifier.urihttp://hdl.handle.net/10754/653087
dc.description.abstractThis paper presents a model-based anomaly detection method for supervising the direct current (dc) side of photovotaic (PV) systems. Toward this end, a framework combining the benefits of k-nearest neighbors (kNN) with univariate monitoring approaches has been proposed. Specifically, kNN-based Shewhart and exponentially weighted moving average (EWMA) schemes with parametric and nonparametric thresholds have been introduced to suitably detect faults in PV systems. The choice of kNN method to separate normal and abnormal features is motivated by its capacity to handle nonlinear features and do not make assumptions on the underlying data distribution. In addition, because the EWMA approach is sensitive in detecting small changes. First, a simulation model for the inspected PV array is constructed. Then, residuals generated from this model are employed as the input for kNN-based schemes for anomaly detection. Parametric and nonparametric thresholds using kernel density estimation have been used to detect faults. The effectiveness of the kNN-based procedures is verified using actual measurements from a 9.54-kWp grid-connected system in Algeria. Results proclaim the efficiency of the proposed strategy to supervise the dc side of PV systems.
dc.description.sponsorshipThis work was supported by the King Abdullah University of Science and Technology (KAUST), Office of Sponsored Research (OSR) under Award OSR-2015-CRG4-2582.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.urlhttps://ieeexplore.ieee.org/document/8657711
dc.subject(kNN), partial shading
dc.subjectFault detection
dc.subjectphotovoltaic (PV) systems
dc.subjectstatistical monitoring charts
dc.titleImproved $k$ NN-Based Monitoring Schemes for Detecting Faults in PV Systems
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentStatistics Program
dc.identifier.journalIEEE Journal of Photovoltaics
dc.contributor.institutionLaboratoire de Dispositif de Communication et de Conversion Photovoltaique, Ecole Nationale Polytechnique Alger, Algeirs, 16200, , Algeria
dc.contributor.institutionCentre de Développement des Energies Renouvelables (CDER), Algiers, 16340, , Algeria
kaust.personHarrou, Fouzi
kaust.personSun, Ying
kaust.grant.numberOSR-2015-CRG4-2582
dc.date.published-online2019-03-18
dc.date.published-print2019-05


This item appears in the following Collection(s)

Show simple item record