• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    TPRF-E Model_M_Revised_V3.pdf
    Size:
    1.563Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Li, Yang
    Alfazazi, Adamu
    Mohan, Balaji cc
    Alexandros Tingas, Efstathios
    Badra, Jihad
    Im, Hong G. cc
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Computational Reacting Flow Laboratory (CRFL)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2019-03-13
    Online Publication Date
    2019-03-13
    Print Publication Date
    2019-07
    Permanent link to this record
    http://hdl.handle.net/10754/652955
    
    Metadata
    Show full item record
    Abstract
    The prospect of blending gasoline fuel with ethanol is being investigated as a potential way to improve the knock residence of the base gasoline. However, one of the drawbacks is a lack of proper understanding of the reason for the non-linear response of blending ethanol and gasoline. This non-linearity could be better understood by an improved knowledge of the interactions of these fuel components at a molecular level. This study proposed a highly reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model containing 59 species and 270 reactions. The model was reduced using the direct relation graph with expert knowledge (DRG-X) (Lu and Law, 20015; Lu et al., 2011) and isomer lumping method. The computational singular perturbation (CSP) analysis were performed to reduce the potential stiffness issues by accordingly adjusting the Arrhenius coefficients of the proper reactions. The model has been comprehensively validated against wide range of ignition delay times (IDT) and flame speed (FS) measurement data as well as compared against two representative literature models from Liu et al. (2013) and Wang et al. (2015). Overall, good agreements were observed between model predictions and experimental data across the entire research octane number (RON), equivalence ratio, pressure and temperature range. In addition, the model has also been coupled with the computational fluid dynamic (CFD) models to simulate the experimental data of constant volume reacting spray of a low-octane gasoline (Haltermann straight-run naphtha), and in-cylinder pressures and temperatures of a high-octane gasoline (Haltermann Gasoline) combustion in a heavy duty compression ignition engine. The coupled model can qualitatively predict the experimentally obtained data with an improved performance for PRF, TPRF, and TPRF-ethanol surrogates.
    Citation
    Li Y, Alfazazi A, Mohan B, Alexandros Tingas E, Badra J, et al. (2019) Development of a reduced four-component (toluene/n-heptane/iso-octane/ethanol) gasoline surrogate model. Fuel 247: 164–178. Available: http://dx.doi.org/10.1016/j.fuel.2019.03.052.
    Sponsors
    The authors acknowledge the support from KAUST and Saudi Aramco under the FUELCOM project.
    Publisher
    Elsevier BV
    Journal
    Fuel
    DOI
    10.1016/j.fuel.2019.03.052
    Additional Links
    https://www.sciencedirect.com/science/article/pii/S0016236119304247
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.fuel.2019.03.052
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.