Show simple item record

dc.contributor.authorZou, Xudong
dc.contributor.authorGao, Xin
dc.contributor.authorChen, Wei
dc.date.accessioned2019-05-20T08:59:02Z
dc.date.available2019-05-20T08:59:02Z
dc.date.issued2019-05-14
dc.identifier.citationZou X, Gao X, Chen W (2019) Deep Learning Deepens the Analysis of Alternative Splicing. Genomics, Proteomics & Bioinformatics. Available: http://dx.doi.org/10.1016/j.gpb.2019.05.001.
dc.identifier.issn1672-0229
dc.identifier.doi10.1016/j.gpb.2019.05.001
dc.identifier.urihttp://hdl.handle.net/10754/652914
dc.description.sponsorshipThis work was supported by the Basic Research Grant (Grant No. JCYJ20170307105752508) from the Science and Technology Innovation Commission of Shenzhen Municipal Government, China and the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR), Saudi Aribia (Grant Nos. FCC/1/1976-04, URF/1/2602-01, URF/1/3007-01, URF/1/3412-01, URF/1/3450-01, and URF/1/3454-01).
dc.publisherElsevier BV
dc.relation.urlhttps://www.sciencedirect.com/science/article/pii/S1672022919300919
dc.rightsUnder a Creative Commons license
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleDeep Learning Deepens the Analysis of Alternative Splicing
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentComputer Science Program
dc.contributor.departmentComputational Bioscience Research Center (CBRC)
dc.identifier.journalGenomics, Proteomics & Bioinformatics
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Biology, Southern University of Science and Technology, Shenzhen 518055, China.
kaust.personGao, Xin
kaust.grant.numberFCC/1/1976-04
kaust.grant.numberURF/1/2602-01
kaust.grant.numberURF/1/3007-01
kaust.grant.numberURF/1/3412-01
kaust.grant.numberURF/1/3450-01
kaust.grant.numberURF/1/3454-01
refterms.dateFOA2019-05-20T13:14:37Z
dc.date.published-online2019-05-14
dc.date.published-print2019-05


Files in this item

Thumbnail
Name:
1-s2.0-S1672022919300919-main.pdf
Size:
347.1Kb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record

Under a Creative Commons license
Except where otherwise noted, this item's license is described as Under a Creative Commons license