• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Comparison of avirulent pathogen Pseudomonas syringae and beneficial Enterobacter sp SA187 for enhancing salt stress tolerance in Arabidopsis thaliana

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dissertation_Rewaa Jalal_Final.pdf
    Size:
    57.28Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Download
    Type
    Dissertation
    Authors
    Jalal, Rewaa S. cc
    Advisors
    Hirt, Heribert cc
    Committee members
    Arold, Stefan T. cc
    Blilou, Ikram cc
    Wrzaczek, Michael
    de-julien-de-Zelicourt, Axel
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2019-05
    Embargo End Date
    2020-05-16
    Permanent link to this record
    http://hdl.handle.net/10754/652894
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-05-16.
    Abstract
    Abiotic stresses such as salt stress are the major limiting factors for agricultural productivity, and cause global food insecurity. It is well known that plant associated beneficial microorganisms can stimulate plant growth and enhance resistance to abiotic stresses. In this context, bacterial endophytes are a group of bacteria that colonize the host plant and play a fundamental role in plant growth enhancement under stress condition. Recently, our group reported that the beneficial bacteria Enterobacter sp.SA187 induces plant growth in Arabidopsis under salt stress conditions by manipulation of the plant ethylene signaling pathway. We therefore compared inoculation of plants by SA187 with virulent and non-virulent strains Pst DC3000. Although both strains inhibit plant growth at ambient conditions, Pst DC3000 hrcC-, but not Pst DC3000, induced salt stress tolerance, suggesting that Pst DC3000 hrcC- also contains plant growth promoting activity under stress conditions. Our results indicate that Pst DC3000 hrcC- shares features with beneficial bacteria by inducing salt tolerance through reduction of the shoot and root Na+/K+ ratio. To further elucidate the underlying mechanisms of this interaction with Arabidopsis, RNAseq, hormone and biochemical analyses were performed. Genetic studies also show that Pst DC3000 hrcC- induced salt stress tolerance involving several phytohormone pathways, including auxin, ethylene and salicylic acid. Transcriptome and genetic analyses indicate that glucosinolates play an important role in this beneficial interaction. We found that indolic and alkyl glucosinolates act as negative factors on Pst DC3000 hrcC-, alkyl glucosinolates are positive and indolic glucosinolates negative regulators in SA187 interaction with Arabidopsis. These results reveal that besides a repertoire of effectors, Pst DC3000 hrcC- also produces factors that can be beneficial for plant growth under certain stress conditions, as observed with Enterobacter sp. SA187.
    Citation
    Jalal, R. S. (2019). Comparison of avirulent pathogen Pseudomonas syringae and beneficial Enterobacter sp SA187 for enhancing salt stress tolerance in Arabidopsis thaliana. KAUST Research Repository. https://doi.org/10.25781/KAUST-T44D3
    DOI
    10.25781/KAUST-T44D3
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-T44D3
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Bioscience Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.