• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Monitoring the Photosynthetic Traits of Plants Grown under the Influence of Soil Salinity and Nutrient Stress

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    DISSERTATION-FINAL.pdf
    Size:
    8.026Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Download
    Type
    Dissertation
    Authors
    Shah, Syed Haleem cc
    Advisors
    McCabe, Matthew cc
    Committee members
    Tester, Mark A. cc
    Hong, Pei-Ying cc
    Lucieer, Arko
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2019-02
    Embargo End Date
    2020-05-15
    Permanent link to this record
    http://hdl.handle.net/10754/652887
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-05-15.
    Abstract
    Irrigated lands generate crop yields that are more than double those of rain-fed lands. Unfortunately, these systems are often heavily reliant on water supplies, which are diminishing globally. Alternative use of impaired quality waters for irrigation can reduce soil quality through secondary salinization, affecting plant health and yields. With salinization of agricultural lands increasing around the world, further understanding the impacts of this on crop production are required. The aim of this research is to assess the influence of soil salinity and nutrient stress on leaf photosynthetic pigments, gas exchange and biochemical photosynthetic parameters in wheat plants. The feasibility of estimating key photosynthetic pigments from in-situ leaf hyperspectral data is examined using vegetation indices, linear regression models and a random forest machine learning technique. Results showed that salinity stress presented a significant increase in the chlorophyll and carotenoid contents per leaf area, although the total pigment contents per plant was reduced as a consequence of lower production of leaf matter. While nutrient application enhanced the photosynthetic pigment content per leaf area, its interaction with salinity stress was found to be significant and varied with salinity level. A strong positive relationship was found between SPAD-502 measurements and leaf chlorophyll content and confirmed that SPAD-based retrieval of photosynthetic pigments can be undertaken with confidence irrespective of any prevailing stress in wheat plants. Photosynthetic parameters directly related to biomass accumulation (such as Vcmax, Jmax and gs) varied considerably with stress levels and growth stages, with high values of these parameters observed at low stress and in periods of more vigorous growth. Employing a random forest machine learning approach with all hyperspectral data as input features significantly improved the predictability and accuracy relative to the univariate linear regression model. However, using vegetation indices as direct predictors further improved the estimation accuracy and robustness of the random forest model. Overall, the findings from this research have implications for large scale estimation of vegetation photosynthetic traits from remotely sensed data, and offer a mechanism by which early detection of stress may be monitored, providing a means for enacting a timely crop management response.
    Citation
    Shah, S. H. (2019). Monitoring the Photosynthetic Traits of Plants Grown under the Influence of Soil Salinity and Nutrient Stress. KAUST Research Repository. https://doi.org/10.25781/KAUST-I785F
    DOI
    10.25781/KAUST-I785F
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-I785F
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.