• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Characterization of microbiologically influenced corrosion in pipelines by using metagenomics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD Dissertation_Badoor Nasser_Final.pdf
    Size:
    3.763Mb
    Format:
    PDF
    Description:
    PhD Dissertation
    Download
    Type
    Dissertation
    Authors
    Nasser, Badoor cc
    Advisors
    Gojobori, Takashi cc
    Committee members
    Arold, Stefan T. cc
    Agusti, Susana cc
    Gad, Magdy M.
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2019-03
    Embargo End Date
    2020-05-09
    Permanent link to this record
    http://hdl.handle.net/10754/652824
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2020-05-09.
    Abstract
    Corrosion in pipelines and reservoir tanks in oil plants is a serious problem in the energy industries around the world because it causes a huge economic loss due to not only frequent replacements of the parts of pipelines and tanks but also potential damage of the entire fields of crude oil. Previous studies have revealed that corrosions are generated mainly by microbial activities and they are now called as Microbial Influenced Corrosion (MIC) or simply bio-corrosion. Bacterial species actually causing bio-corrosion is crucial for the suppression of the corrosion. To diagnose and give proper treatment to pipelines in industrial plants, it is essential to identify the bacterial species responsible for bio-corrosions. For attaining at this aim, I conducted an analysis of the microbial community at the corrosion sites in pipelines of oil plants, using the comparative metagenomic analysis along with bioinformatics and statistics. In this study, I collected and analyzed various bio-corrosion samples from four different oil fields. First, I collected samples from the seawater pipelines that are essential in the oil fields to maintain seawater injection system (field#1), and then I conducted the metagenomic analysis of these samples. The metagenomes obtained revealed that samples in both sites contain a wide range of bacterial taxa. However, the comparative analysis of the microbial community with statistics in the comparison between sites with corrosion and without corrosion revealed the presence of microorganisms whose abundances were significantly higher in sites with corrosion. Some of these microbes can be sulfate reducers and sulfur oxidizers of which are considered to be casual agents in recent bio-corrosion models. In addition to the seawater pipelines, I also collect samples from corrosion sites in oil pipelines at Field #2 and #3. My metagenomic analysis combined with statistics showed that several microorganisms are speculated to be very active at the corrosion sites in the oil pipeline. Although biological mechanisms of forming bio-corrosion in the oil pipelines still remain unclear, these microbial species are suggested to be some of the responsible bacteria for bio-corrosion in the oil pipelines. Besides seawater injection systems, groundwater injection systems are often used, especially in inland oil fields. Therefore, more detailed understanding of biocorrosion in the groundwater injection system is also required in oil industries. In the present studies, I then analyzed the microbial communities in pipelines in the oil field where groundwater is used as injection water (field #4). I collected samples from four different facilities in the field #4. Metagenome analysis revealed that microbial community structures were largely different even among samples from the same facility. Treatments such as biocide and demineralization at each location in the pipeline may affect the microbial communities independently. The results indicated that microbial inspection throughout the pipeline network is important to protect industrial plants from bio-corrosions. Identifying the bacterial species responsible to bio-corrosion, this study provides us with information on bacterial indicators that will be available to classify and diagnose bio-corrosions. Furthermore, these species may be available as biomarkers to detect the events of bio-corrosion at an early stage. Then, any appropriate care such as the appropriate choice of biocides can be taken immediately and appropriately. Thus, my study will provide a platform for obtaining microbial information related to bio-corrosion that enables us to obtain a practical approach to protect them from bio-corrosion.
    Citation
    Nasser, B. (2019). Characterization of microbiologically influenced corrosion in pipelines by using metagenomics. KAUST Research Repository. https://doi.org/10.25781/KAUST-HF9R3
    DOI
    10.25781/KAUST-HF9R3
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-HF9R3
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.