Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage
Name:
Manuscript Alshareef et al.pdf
Size:
2.937Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Hota, Mrinal Kanti
Jiang, Qiu

Wang,Zhenwei
Wang, Zhong Lin
Salama, Khaled N.

Alshareef, Husam N.

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Functional Nanomaterials and Devices Research Group
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Sensors Lab
KAUST Grant Number
CRF-2015-SENSORS-2709Date
2019-05-06Permanent link to this record
http://hdl.handle.net/10754/652816
Metadata
Show full item recordAbstract
The development of self-powered electronic systems requires integration of on-chip energy-storage units to interface with various types of energy harvesters, which are intermittent by nature. Most studies have involved on-chip electrochemical microsupercapacitors that have been interfaced with energy harvesters through bulky Si-based rectifiers that are difficult to integrate. This study demonstrates transistor-level integration of electrochemical microsupercapacitors and thin film transistor rectifiers. In this approach, the thin film transistors, thin film rectifiers, and electrochemical microsupercapacitors share the same electrode material for all, which allows for a highly integrated electrochemical on-chip storage solution. The thin film rectifiers are shown to be capable of rectifying AC signal input from either triboelectric nanogenerators or standard function generators. In addition, electrochemical microsupercapacitors exhibit exceptionally slow self-discharge rate (≈18.75 mV h-1 ) and sufficient power to drive various electronic devices. This study opens a new avenue for developing compact on-chip electrochemical micropower units integrated with thin film electronics.Citation
Hota MK, Jiang Q, Wang Z, Wang ZL, Salama KN, et al. (2019) Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage. Advanced Materials: 1807450. Available: http://dx.doi.org/10.1002/adma.201807450.Sponsors
Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST) under the Sensors Initiative (grant number CRF-2015-SENSORS-2709). The authors thank the core laboratory and the imaging and characterization staff at KAUST for their support.Publisher
WileyJournal
Advanced MaterialsAdditional Links
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201807450ae974a485f413a2113503eed53cd6c53
10.1002/adma.201807450