• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    High Performance Polar Decomposition on Manycore Systems and its application to Symmetric Eigensolvers and the Singular Value Decomposition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dalal Sukkari Dissertation.pdf
    Size:
    3.104Mb
    Format:
    PDF
    Download
    Type
    Dissertation
    Authors
    Sukkari, Dalal cc
    Advisors
    Keyes, David E. cc
    Committee members
    Alouini, Mohamed-Slim cc
    Laleg-Kirati, Taous-Meriem cc
    Ltaief, Hatem cc
    Kressner, Daniel
    Program
    Applied Mathematics and Computational Science
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2019-05-08
    Permanent link to this record
    http://hdl.handle.net/10754/652466
    
    Metadata
    Show full item record
    Abstract
    The Polar Decomposition (PD) of a dense matrix is an important operation in linear algebra, while being a building block for solving the Symmetric Eigenvalue Problem (SEP) and computing the Singular Value Decomposition (SVD). It can be directly calculated through the SVD itself, or iteratively using the QR Dynamically-Weighted Halley (QDWH) algorithm. The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. The latter is an iterative method, which performs more floating-point operations than the SVD approach, but exposes at the same time more parallelism. Looking at the roadmap of the hardware technology scaling, algorithms perform- ing floating-point operations on locally cached data should be favored over those requiring expensive horizontal data movement. In this context, this thesis investigates new high-performance algorithmic designs of QDWH algorithm to compute the PD. Originally introduced by Nakatsukasa et al. [1, 2], our algorithmic contributions include mixed precision techniques, task-based formulations, and parallel asynchronous executions. Moreover, by making the PD competitive, its application to the SEP and the SVD becomes practical. In particular, we introduce for the first time new algorithms for partial SVD decomposition using QDWH. By the same token, we extend the QDWH to support partial eigen decomposition for SEP. We present new high-performance implementations of the QDWH-based algorithms relying on fine-grained computations, which allows exploiting the sparsity of the underlying data structure. To demonstrate performance efficiency, portability and scalability, we conduct benchmarking campaigns on some of the latest shared/distributed-memory systems. Our QDWH-based algorithm implementations outperform the state-of-the-art numerical libraries by up to 2.8x and 12x on shared and distributed-memory, respectively. The task-based QDWH has been integrated into the Chameleon library (https://gitlab.inria.fr/solverstack/chameleon) for support on shared-memory systems with hardware accelerators. It is also currently being used by astronomers from the Subaru telescope located at the summit of Mauna Kea, Hawaii, USA. The distributed-memory software library of QDWH and its SVD extension are freely available under modified-BSD license at https: //github.com/ecrc/qdwh.git and https://github.com/ecrc/ksvd.git, respectively. Both software libraries have been integrated into the Cray Scientific numerical library LibSci v17.11.1 and v19.02.1.
    DOI
    10.25781/KAUST-R20B1
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-R20B1
    Scopus Count
    Collections
    Applied Mathematics and Computational Science Program; Dissertations; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.