Show simple item record

dc.contributor.authorCirant, Marco
dc.contributor.authorNurbekyan, Levon
dc.date.accessioned2019-04-28T13:12:15Z
dc.date.available2019-04-28T13:12:15Z
dc.date.issued2018-04-24
dc.identifier.urihttp://hdl.handle.net/10754/632516
dc.description.abstractHere, we observe that mean-field game (MFG) systems admit a two-player infinite-dimensional general-sum differential game formulation. We show that particular regimes of this game reduce to previously known variational principles. Furthermore, based on the game-perspective we derive new variational formulations for first-order MFG systems with congestion. Finally, we use these findings to prove the existence of time-periodic solutions for viscous MFG systems with a coupling that is not a non-decreasing function of density.
dc.publisherarXiv
dc.relation.urlhttp://arxiv.org/abs/1804.08943v1
dc.relation.urlhttp://arxiv.org/pdf/1804.08943v1
dc.rightsArchived with thanks to arXiv
dc.titleThe variational structure and time-periodic solutions for mean-field games systems
dc.typePreprint
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.eprint.versionPre-print
dc.contributor.institutionDipartimento di Matematica “Tullio Levi-Civita”, Universit`a di Padova, via Trieste 63, 35121 Padova (Italy)
dc.identifier.arxivid1804.08943
kaust.personNurbekyan, Levon
dc.versionv1
refterms.dateFOA2019-04-29T06:54:31Z


Files in this item

Thumbnail
Name:
1804.08943v1.pdf
Size:
398.5Kb
Format:
PDF
Description:
Preprint

This item appears in the following Collection(s)

Show simple item record