Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionComputer Science Program
Computational Bioscience Research Center (CBRC)
KAUST Grant Number
FCC/1/1976-18-01FCC/1/1976-23-01
FCC/1/1976-25-01
FCC/1/1976-26-01
URF/1/3007-01-01
URF/1/3450-01-01
Date
2019-04-22Online Publication Date
2019-04-22Print Publication Date
2019-04Permanent link to this record
http://hdl.handle.net/10754/632515
Metadata
Show full item recordAbstract
Deep learning, which is especially formidable in handling big data, has achieved great success in various fields, including bioinformatics. With the advances of the big data era in biology, it is foreseeable that deep learning will become increasingly important in the field and will be incorporated in vast majorities of analysis pipelines. In this review, we provide both the exoteric introduction of deep learning, and concrete examples and implementations of its representative applications in bioinformatics. We start from the recent achievements of deep learning in the bioinformatics field, pointing out the problems which are suitable to use deep learning. After that, we introduce deep learning in an easy-to-understand fashion, from shallow neural networks to legendary convolutional neural networks, legendary recurrent neural networks, graph neural networks, generative adversarial networks, variational autoencoder, and the most recent state-of-the-art architectures. After that, we provide eight examples, covering five bioinformatics research directions and all the four kinds of data type, with the implementation written in Tensorflow and Keras. Finally, we discuss the common issues, such as overfitting and interpretability, that users will encounter when adopting deep learning methods and provide corresponding suggestions. The implementations are freely available at https://github.com/lykaust15/Deep_learning_examples.Citation
Li Y, Huang C, Ding L, Li Z, Pan Y, et al. (2019) Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods. Available: http://dx.doi.org/10.1016/j.ymeth.2019.04.008.Sponsors
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST), under award number FCC/1/1976-18-01, FCC/1/1976-23-01, FCC/1/1976-25-01, FCC/1/1976-26-01, URF/1/3007-01-01, and URF/1/3450-01-01.Publisher
Elsevier BVJournal
MethodsAdditional Links
https://www.sciencedirect.com/science/article/pii/S1046202318303256ae974a485f413a2113503eed53cd6c53
10.1016/j.ymeth.2019.04.008